Notación


Lista de significados de los símbolos para una lectura más rápida de las entradas del blog o de los archivos en PDF.


\mathbb{R} – Números reales

\mathbb{N}  =\left\{ 1, 2, 3, 4, \ldots  \right\}

{\mathbb{Z}}^{-}  =\left\{ p :  p=-n   \hspace{0.5cm} \forall n \in \mathbb{N}  \right\}

\mathbb{C}  =\left\{ a + ib :  a, b \in \mathbb{R},  {i}^{2}=-1    \right\}

\mathbb{A} (\mathbb{N}) =\left\{f\phantom .|\phantom.f:\mathbb{N}\to \mathbb{C}\right\}

\displaystyle\sum_{k=1}^n{}_{m} \,\,\, f(k) := \displaystyle \sum_{k_{ 1}=1}^n\sum_{k_{ 2}=1}^{k_1}\cdots  \displaystyle \sum_{k_{{m-1}}=1}^{k_{{m-2}}}\sum_{k_{m}=1}^{k_{{m-1}}}f(k_m)  \hspace{1cm}  \, \, \forall \, n, m \in \mathbb{N}

\displaystyle\sum_{k=1}^n{}_{0} \,\,\, f(k) := f(n)

h_f(n) :=\displaystyle\sum_{k=1}^n{}_{-m} \,\,\, f(k) \, \Leftrightarrow  \,  f(n) :=\displaystyle \sum_{k_{ 1}=1}^n\sum_{k_{ 2}=1}^{k_1}\cdots \displaystyle \sum_{k_{{m-1}}=1}^{k_{{m-2}}}\sum_{k_{m}=1}^{k_{{m-1}}}h_f(k_m) \, \,  \forall \, m \in \mathbb{N}

\theta_m(n) :=\displaystyle \sum _{k=1}^n {}_{m} \left[\frac {1} {k}\right]