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Resumen

Se estudia la propiedad lineal del operador ¥ sobre multi-indices
representados por composiciones de niimeros naturales, en analogia al
caso concencional de iteracién, se presenta el teorema de linealidad en la
iteracién y se muestra que el teorema multinomial es una resultado
particular de esta propiedad.

1. Introduccion

Las sumas sobre las funciones aritméticas cuando la operacion se realiza
sobre particiones con repeticién de un nimero natural no es algo que se estudie
a menudo, esto hace parecer que realizar iteraciones para este caso resulte una
tarea nada grata. Sin embargo, una vez que se tienen los elementos necesarios
es sorprendente la facilidad con la se van dando los conceptos y los resultados.
El primer paso es entender el concepto de particiéon y particiéon con repeticion
de un nimero natural.

1.1. Particiones de un nimero natural

Definicién 1.1 Una particion de un nimero natural w es una suma de nimeros
naturales cuyo total es w en la que es irrelevante la repeticion y orden de los
sumandos, también se considera a w como una particion de si mismo.

Para ver un ejemplo de esto consideremos el ntimero 7,
Ejemplo 1.2

7 = 1414141414141 =3434+1=2+24+24+1=54+2
44241=14145=4414+1+1=1+1+1+1+1+2
= 3+4=6+1=2+2+1+1+1=2+43+1+1=2+2+3
= 3+1+1+1+1,
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Como se puede advertir en el ejemplo anterior, en las particiones el orden
de los sumando es irrelevante pues

3+3+1=3+14+3=1+3+3,

representan la misma particién de 7. Normalmente a las permutaciones de los
sumando en las particiones se les conoce como composiciones o particiones con
repeticion.

Por otra parte, notemos otra caracteristica de las particiones del nimero 7,

T =7

6+1=4+3=5+2
44+241=1+34+3=2+24+3=5+1+1
4+1+1+1=2+24+2+1=2+3+1+1
3+1+14+1+1=24+24+1+1+1
2+1+14+14+1+1

= 1+1+14+14+141+41

Como podemos ver las particiones pueden clasificarse segin el niimero de su-
mandos.

Observacion 1.3 Sea w € N, entonces se tiene lo siguiente

i) Vp € N con 1 < p < w, existe al menos una particion de w con exactamente p
sumandos, es decir, w = ki +--- + kp.
Esto es inmediato pues basta considerar k; =w —p+1yk; =1Vj #1

ii) Para cualquier particion de p elementos tal que w = ki + --- + k, se tiene
que,
n=w—p+1>k;Vi

Por el inciso anterior, es claro que n es un sumando de al menos una parti-
cion de p elementos de w, por lo tanto solo falta ver que es mayor o igual que
cualquier sumando de cualquier particion de p elementos.

Demostracion.

Sin pérdida de generalidad podemos descartar la particion trivial, esto es
cuando p = 1 ya que es inmediato, ahora supongamos que existe una particion
de w tal que w = ky +--- 4+ kp y ki > n para algin i. Recordemos que para
cualquier particion 1 < kj, entones sumando las desigualdades Vi # i se tiene

que
p-1<) K
Vi
y como suponemos que n < k;, entonces sumando las dos desigualdades ante-
riores se tiene que

ntp—1<ki+ Y ki=ki+-+k
Vi
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lo cual es un absurdo pues w="Fk; +-+k, yn=w—p+ 1. Claro el absurdo
surge de suponer que existe un sumando de alguna particion de p elementos,

mayor que n.
]

Ahora que ya contamos con lo necesario podemos empezar a establecer la
idea de iteraciones para el caso de multi-indices.

1.2. Suma sobre multi-indices versiéon convencional

De forma usual se denota al conjunto de las funciones aritméticas como
A(N) = {f | f: N—= C}. Recordemos el caso cuando solo se utiliza un indice
en la sumatoria. Sea f € A(N) y n € N. La funcién suma de f definida por el
operador X, es la funcién aritmética g tal que

g(n) = f(k) = f(1) + -+ f(n).
k=1

Aqui es donde comienza el andlisis que nos ayudard a entender la sumatoria
sobre varios indices, pues la expresion anterior pude ser descrita y entendida de
una forma diferente, veamos el porque.

Cuando escribimos la expresién,

> f(k)
k=1

se puede considerar de forma equivalente como la suma sobre las composiciones
de dos elementos de un nimero natural, es decir,

Dofky= > f(s)
k=1 k+s=n+1

Explicar porque esta equivalencia es cierta es sencillo, ya que todas las com-
posiciones de dos elementos del nimero n+1 son de la forma k+(n+1—k) = n+1
donde 1 < k <n.

Sin embargo, la naturaleza de las expresiones
n
> fk)

k=1

> f(s),

k+s=n-+1

pese a denotar la misma suma, es muy diferente y por tal motivo merecen un
estudio a detalle.
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Primero,

n

> f(k),
k=1
se entiende como la indizacién los sumandos empleando el orden usual de los
nimeros naturales, pues recordemos que la suma se realiza sobre funciones
aritméticas entonces resulta inmediato la eleccién natural en el orden de los

valores,

D F)=F)+ @)+ 4 f(n—1)+ f(n).

k=1

Por otra parte, al denotar

> fk),

k+s=n+1

como se ha mencionado, se considera las composiciones de dos elementos del
ntmero n+1 de la forma k 4+ (n+1— k) = n+ 1 siendo 1 < k < n, claro
la eleccion de los sumandos también puede considerarse con el orden usual por
la relacién intrinseca que existe en ambos casos. Sin embargo, la naturaleza
de este caso se pone de manifiesto en el caso general, cuando se consideran
composiciones de p elementos de un numero natural w, el orden usual en la
eleccion los sumando carece de sentido por las repeticiones en la forma que se
puede escindir el nimero w y por otro lado, se presenta el reto de definir de
forma adecuada la suma sobre composiciones arbitrarias aplicadas a todas la
funciones aritméticas sin la necesidad de prescindir de casos particulares, en
concreto lo que se pretende es logar que la siguiente expresién tenga sentido
para cualquier funcién aritmética f,

> flk)

ki+-tkp=w

Existen diversas e interesantes formas de definir las sumas sobre compo-
siciones de nimeros naturales, la que se ha elegido ayuda a converger los re-
sultados del caso convencional de suma de funciones aritméticas y esta estre-
chamente ligada con las dos propiedades estudiadas en la Observaciénl.3]
Primero, necesitamos pensar la forma adecuada para correr la suma sobre
ki+ky---+kp_1+k, = w, es decir, sobre composiciones arbitrarias de nimeros
naturales, esto es sencillo ya que como puede notarse en el caso de composicio-
nes de dos elementos, hay que considerar un parametro fijo de la composicién y
realizar la suma sobre todos los valores posibles de ese pardmetro, al hacer esto
es necesarios aclarar que no se considera el orden usual de los niimeros natura-
les, pues el parametro depende tnicamente de la composicién en cuestién y por
otra parte, es irrelevante el parametro a determinar ya que al trabajar sobre
composiciones de un nimero w, todos los sumando puede tomar cada valor de
dicha composicién por la definicién de composicién de nimeros naturales.
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Segundo e igualmente importante, el otro reto es eludir los casos indetermi-
nados, pues es claro que la expresién ky + ka--- 4+ kp—1 + kp, = w, carece de
sentido si el nimero de sumandos es mayor a w. Pero esto se resuelve de forma
inmediata al decir que trabajamos sobre composiciones de nimeros naturales,
estamos considerando solo expresiones ki + ks - - - +kp—1 +kp = w bien definidas,
es mds, la Observacién1.3|nos sirve para desarrollar de una forma maés eficien-
te la expresién anterior pues cada composicion de p elementos tiene una manera
canénica de escindir a w, esto es, w = n, +p — 1 donde n, es el maximo de los
sumandos de cualquier particiéon de p elementos del nimero w. Asf la expresion
ki+ko---+kp_1+ky, =w serd escrita como ki +ky - -+kp_1+k, =np,+p—1,
de esta manera la suma se realizard sobre todos lo valores naturales de n, para
composiciones de p elementos.

Definicién 1.4 Sea f € AN) y p € N. Diremos que la suma sobre muilti-
indices de la funcion f, es la funcion aritmética h tal que

h(np) = f(k},m EL... 7]@11])(]1'%) + -+ f(k{",--- ’k;n,’...k;)(k;n)

donde K+ -+ k= mp+p— 1, Sk, per ) (KE) = F(E)
y se denotard como,

h(ny) = > flke) =" f(ky)

ki tkp=np+p—1 py(n)

En la notaciéon anterior r indica la posicién del sumando en la composicion
sobre el que se aplicard la suma y se omite la referencia que n, es el maximo
de los sumando ya que tomara todos los valores naturales y como puede verse
la suma considera a todas las composiciones de p elementos. Para entender esta
definicién mostraremos un ejemplo considerando composiciones de 4 elementos
para una funcién aritmética f arbitraria evaluando los primeros tres valores
naturales.



https://mathsingular.com.mx

Este trabajo tiene licencia CC BY-SA 4.0

Ejemplo 1.5

h(1)

I
=

P
w
N

= > f(ks)

ki+ko+kz+kg=14+4—-1

= f(1,1,1,1)(1) = f(1)7

B2 = 3 flks)
u3(2)
= > f(ks3)
k1+ko+ks+kg=24+4—-1
= fa1,1,2Q)+ fa,1,2,0)2) + faz1,0@) + fi2,1,1,1)(1)
= 3f()+f(2),

M) = Y Ik

13 (3)

= Z f(ks)
k1+kot+k3z+kg=3+4—1

= faar1,3)+ fa,1,3003) + fa,s1,0(1) + fz1,,n(1) +
fez21,)(1) + fie1,202) + fa,1,1,2 (1) + fa,2,20(2) +
Ja21,2 (1) + fa,1,2,2)(2)

= 6f(1)+3f(2) + f(1).

Una vez entendida la definicién y notaciéon anterior, se puede trabajar sin
escritura excesiva, pues saber que la suma se realiza sobre todas las particiones
de p elementos y que p es un parametro fijo hacen méas amigable el desarrollo
de los resultados.

1.3. Suma sobre multi-indices versién multinomial

Para esta versiéon denotaremos a las funciones aritméticas definidas o exten-
didas en cero como A*(N*) = {f | f: NU{0} — C}.

Recordemos que todas composicién de p elementos tiene una representacién
canénica, ki +- - -+kp = np+p—1, donde n, es el maximo de todos los sumandos,
pero esta expresién, a su vez, se puede rescribir como,

(k1 —1) 4+ (kp—1)=mn, —1.

Y como en el caso anterior la suma se hace correr sobre todos los valores natura-
les de n, entones esta expresién puede considerarse de forma equivalente como
ri+--+1r, =N, donde ri,...,75, N, > 0. Es claro que se consideran sumas
no negativas de p elementos, de un nimero no negativo N,. Asi por analogia al
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caso caso anterior podemos establecer la suma sobre un operador que involucre
a los coeficientes multinomiales,

Definicién 1.6 (Versién multinomil) Sea f € A*(N*) y p € N. Diremos que
la suma de la funcién f sobre muilti-indices respecto del operador

x G
=N, N1 T
es la funcion h tal que,
N,
= X (N Y e
_ T‘l.../’"w...rp
Tt re ety =Ny
donde 1y 4+ 10+ 15 = Npy fioy e i) (72) = F(2)
y se denotard como,
= > J):
By (Np)

Nuevamente, x solo denota la posiciéon del sumando sobre el cual se correrd la
suma y como esta se aplica para todo N, > 0, entonces se puede prescindir del
subindice p para considerar solo el termino N > 0.

2. Iteraciones

2.1. Iteraciones version convencional

En esta seccion se emplearan definiciones y notaciones usadas para el caso
convencional de suma del operador suma sobre funciones aritméticas, no se
profundizara en ellos, se pueden consultar las referencias para un estudio clasico
y conciso, aqui se opta por desarrollar los conceptos expuestos presentado en mi
Tesis de Licenciatura. Primero, recordemos algunas definiciones,

Definicién 2.1 Sea f € A(N) y m € N. La funcidn iterada de grado m de f
respecto al operador Suma, es la funcion aritmética h tal que

n vn 1
k1=1ko=1 km—-1=1kn=1

y se denota como

3

f(k)
k=1
esto es,

7711

S CEDSH S S SU

k=1 ki1=1ko=1 km—1=1kn,=1
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Observacion 2.2 Para cualquier funcion aritmética f, se define a la misma
funcion f como su funcion iterada de grado 0 y esto se denota como

S°Fk) = fn).
k=1

Analogamente se tiene que.

Definicién 2.3 Sea f € A(N) y m € N. La funcidn iterada reciproca o dual de
grado m respecto al operador Suma de la funcion f, es una funcion aritmética h
tal que

n k‘l km—l

km—2
)= Y > hlkn)

ki=lko=1  kp_1=1kn=1
y se denota como

S s

k=1

n
Definicién 2.4 Sean n € N, m € Z. Entonces se define la siguiente funcion
como
"1
i =3 [7]
k=1
Por lo tanto, de las definiciones anteriores se puede demostrar que Vn € N
<m +n— 2) ’ m>0,
n—1
em(n) = [%} ’ m = 07

(-1)"! (n_inl) , m<O0.

Y con ellos se obtiene el seguiente resultado,

Teorema 2.5 Para cualquier funcion aritmética f se tiene que

me(k):zem(n+l—k)f(k) Vn € N,Vm € Z
k=1 k=1

La demostracion es bdsica por induccion.

Por otra parte, recordemos que las generalizaciones de los factoriales complejos son
las siguientes,

n 2 =z(z—-1)...(z—n+1)

» 2" =z2(z+ 1) (z4+n-1)
Y cumple la siguiente relacién,

. = (1) ()

Por lo tanto, los factoriales pueden ser descritos en términos de la funcién Gamma,
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n I'(z+n
n 2= %(t)) R(z) >0

== () e

Asi, usando las propiedades anteriores podemos extender la funcién 0, (n).
Definicién 2.6 Para cualquier z € C y Vn € N definimos la funcién 0. (n) como;
(Z)ﬁ
Vv 0
92(77,): (’I’L—l)!’ Z7é )
1], 2=
Y por otra parte,

Definicién 2.7 Sea f € A(N) y z € C . Diremos que la funcidn iterada de grado z de
la funcidn f, es una funcion aritmética g tal que

g(n) =Y 0:(n+1—k)f(k)

y la denotaremos como

3

f(E).
z
k=1
Definicién 2.8 Sean f € A(N) y m € N. Diremos que la funcién iterada de grado m
de f respecto de la funcion aritmética g es una funcion aritmética h tal que

n k1 Ko —2 km—1
hn)=Y gn—ki+1) > glki—ke+1)-- > glhmo—kn-1+1) > gkm-1 —km +1)f(km)
k1=1 ko=1 kp_1=1 km =1

y la denotaremos como

k).
Z[Wu;(n)] 1)
k=1

Definicién 2.9 Sea f € A(N), entonces diremos que f es su funcidn iterada de grado
0 respecto de g y denotaremos esto como

n

Z[o,gm)] f(k) = f(n).

k=1

Definicién 2.10 Sean f,g € A(N) con g(1)#0 y m € N . Diremos que la funcién
iterada dual de grado m f respecto de la funcion g es una funcion aritmética h tal que

n k1 km—2 km—1
f) =Y gn—ki+1) > gki—ka+1)--- > glkmo—kn-1+1) > glkm-1 = km + 1)h(km)
k1=1 ko=1 km—1=1 kEm=1

y la denotaremos como

Z[—mg(n)] F (k).
k=1
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Observacioén 2.11 Es claro que sin la restriccion ¢(1)7#0 se tiene una definicion ab-
surda y la respuesta es simple, si g(1)=0 y f(1)#0, entonces no es posible hallar una
funcién h tal que f(1)=g(1) h(1). Con esto podemos ver que la existencia de

n

Z[—m,g(w] 1)

depende de la naturaleza de la funcion g y es independiente de la funcion aritmética f
sobre la cual se trabaja.

Definicién 2.12 Seann € N |, m € Z y g € Ao(N). Entonces definimos la siguiente

funcion
z 1
0 = -
mam] (1) = D . {k}

k=1
Teorema 2.13 Sean g, f € A(N) talque g(1)#0 , entonces tenemos que

n

Z[m,g(n)] FB) =" Opmgmy ()f(n—k+1) VneNVmeZ
k=1 k=1
La demostracion se realiza por induccion, optaremos por omitirla.

Hasta este punto se ha presentado basicamente la mayoria de la teoria para el caso
convencional. Sobre esto, conviene decir que era necesario para fundamentar sélida-
mente la suma sobre muti-indices, para finalizar recordemos el producto o convolucién
de Cauchy para funciones aritméticas.

Definicién 2.14 Para cualesquiera funciones f,g € A(N) se dice que el producto de
Cauchy es una funcion aritmética h talque

h(n) =Y f(n+1—k)g(k) VneN.
k=1

y se denota como

h(n) = f(n) x g(n)

2.2. Iteraciones version binomial

Este apartado es necesario para entender de forma clara las iteraciones para el
caso de multi-indices de la versién multinomial y al ser de caracter elemental, no se
detallardn los conceptos ya que por analogia con el caso convencional son inmediatos.

Definicién 2.15 Para cualesquiera funciones f,g € A*(N*) se dice que el producto
de Cauchy sobre el operador
N
> (7
r 7

r=0
es una funcion h talque,

M) =3 (M) rv = ryato,

T
r=0

y se denota como
h(N) = f(N)*"g(N)

10
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Ahora, veamos las siguientes definiciones

Definicién 2.16 Sea f € A*(N*) y m € N. La funcidn iterada de grado m respecto
N

al operador Eiv:o ( ) , de la funcidn f, es una funcion h tal que
r

0= (1) 2, () Z () e

Ton—
r1=0 m_1=0 N LS,

y se denota como

S (™) s

r=0
Observacion 2.17 Para cualquier funcion f, se define a la misma funcion f como su

N
funcion iterada de grado 0 respecto al operador Zi\f:(] ( ) , y esto se denota como
r

Flm) = 21:: (M) 700

Anélogamente se tiene que.

Definicién 2.18 Sea f € A(N) ym € N. La funcién iterada reciproca o dual de grado

N
m respecto al operador Zi\]:o ) , de la funcidn f, es una funcion h tal que
r

=500 5 () & (o

Tm— T
r1=0 Tm—1=0 m=1 rm=0 m

y se denota como

= (V)se

r=0
Definicién 2.19 Sean n € N, m € Z. Entonces se define la siguiente funcion como

=3 () [

r=0

Por lo tanto, de las definiciones anteriores se puede demostrar que,

m", m # 0,
{[Nlﬂ], m = 0.

Y con ello, se obtiene el siguiente resultado,

Pm(N) =

Teorema 2.20 Para cualquier funcidn f se tiene que

N N

Zm (f) fr)= Zm (f) Ym(r)f(N =7) mEZ

r=0 r=0
La demostracion es bdsica por induccion.

11
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Por otra parte, se puede extender la definicién a nimeros complejos, de la siguiente
forma.

Definicién 2.21 Para cualquier z € C definimos la funcion . (N) como;
N
A z#0,
Tﬁz (N) = 1 -0
NF1 | z = U.
Por lo tanto, se puede hacer una extensién compleja.
Definicién 2.22 Sea f € A*(N*) y z € C . Diremos que la funcidn iterada de grado

N
z de la funcion f respecto al operador Zi\[:o , es una funcion h tal que
r

p =3, (V) warrer )
y la denotaremos como - N
=3 ()10

3. Iteraciones sobre multi-indices

De igual forma a lo anteriormente realizado, trataremos dos caso el convencional
y su forma multinomial.

3.1. Caso convencional
Veamos lo siguiente.

Observacién 3.1 Sean fi,---, fp funciones aritméticas tales les que

Z fi(n—k1+1) Z fo(k1—ko+1) - Z fr1(kp—kp_1+1) Z fo(ky) ¥n,p € N.

ki=1 ko=1 kp_1=1 kp=1
Entonces se tiene que,

Jy= S fulkn)- - folke,) VmpeEN.

ki4-kp=n+p—1
1<k, <n
ri#r; 1<i,5,k<p

Esto es claro, ya que f(n) = fi(n)*- - * fm(n) es un producto conmutativo y asociativo.

Observacién 3.2 Para cualquier p € N y para toda f € A(N) se tiene que
IIRICOEDY _ (k) VneN

entonces utilizando la Definicion - esto es equivalente a

> fk) Z P f(k) VneN.

pp(n) k=1

12
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Ya tenemos lo necesario para definir las iteraciones para el caso de muti-indices.

Definicién 3.3 Sean f € A(N) y p € N. Diremos que la funcién iterada de grado m
sobre el operador
> 1]

pp(n)

de f, es una funcion aritmética h tal que

hn)= > > > > flkn,) ¥neN

upt () np?(key) ™ (ko) B (Br )

> fk).

pp(n)

y la denotaremos como

De igual forma que en la Definicién [1.6] mostraremos un ejemplo considerando
composiciones de 4 elementos para una funcién aritmética f arbitraria evaluando los
primeros dos valores naturales en las dos primeras iteraciones.

1) = S0 fks)

p3(1)

= > D fka)

IGACONTACY)

= > > flks)

kitkot+ks+ka=1+4—1 \ 13 (k3)

= D> flk)= ) flks)

D RN ng (1)

= > f(ks3)

k1+ko+tkz+ks=14+4—-1

= f(1,1,1,1)(1) = f(1)7

13
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=

N
®

N
Il

ZZ f(ks)

13(2)

= > ) flka)

13 (2) pd (k3)

= > > fks)

kitko+ksthka=24+4=1 \ u3(k3)

= S )+ D fR)+ > flk)+ > flks)

”2(1,1,1,2)(1) ”431(1,1,2,1)(2) “431(1,2,1,1)(1) “2(2,1,1,1)(1)
= 3 > flks) | + > f(ks)
k1+ko+k3+kg=14+4—-1 k1+ko+kz+ks=24+4-1

= 3fa1,1,n(1)+ (f(1,1,1,2)(1) + fa1,2,0)2) + fa,2,,0(1) + f(2,1,1,1)(1))
= 3f(M)+BfA)+ £(2) =6f(1) + f(2)

Con este ejemplo breve se puede ver de forma clara como se trabaja en la iteracién
sobre una funcién arbitraria para el caso de multi-indies.

Observacién 3.4 Sea f € A(N), entonces diremos que f es su funcién iterada de
grado 0 sobre el operador
> 11

pp(n)

y denotaremos esto como

f(n) = Zof(kr) Vn e N.
pp(n)
Definicién 3.5 Sean f € A(N) y m,p € N. Diremos que la funcién iterada dual de
grado m sobre el operador
> L]

pp(n)

de f, es una funcién aritmética h tal que

)= > > > hks,) VneN

“;1 (n) ”‘;2 (krl) H;7n71(km72) u;m<k7'n171>

> flk).

pp(n)

y la denotaremos como

Definicién 3.6 Sean n,p € N | m € Z. Entonces definimos la siguiente funcion

ém(n) = mel(l(kr) = 1)

pp(n)

14
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Definicién 3.7 Para cualesquiera funciones f,g € A(N) yp € N se define el producto
*p., COMO

£, g(n) = > flki)g(k;) i#j 1<4,5<p YneN.
kit tkp=ntp-1

Entonces resulta inmediato lo siguiente

Observacién 3.8 Sean fi,..., fv , g1, 9w , [y g en A(N) tales que

Z fl(k’n)"'fv(krv):f(n)

> gilke) - gu(kr,)=gn) VnpeN 1<p,1<v<p,l<w<p-v

LT ()

entonces
S Ak folbe)gk) = S k) gu(ke,)f(ks)  YnpeN
ppt T (n) ppt TR ()

Teorema 3.9 (Version para multi-indices) Para cualquier funcidn aritmética f se tie-
ne que,

D fk) = S Ok f (k) Vn € N,Ym € Z

H;(") ki+...+kp=n+p—1

3.2. Caso Mutinomial

Veamos lo siguiente.

Observacion 3.10 Sean fi,---, fp funciones tales que
N N 1 r Tm—2 r Tm1 7
1 m—2 m—1
10=3 (M) a0 X () pe 3 (177) fucrtrnn) 35 (707t
r1=0 ro=0 Tm—1=0 m= Tm =0 m

Entonces se tiene que,

IR S N GRS P RO A SIS

Py
P1ed g rp=N * P

Esto es claro, ya que f(N) = fi(N) *® --- +? f,,(N) es un producto conmutativo y
asociativo.

Definicién 3.11 Sea f € A*(N*) y m,p € N. La funcién iterada de grado m de f

respecto al operador
DR
Tl CEERY Tp ’

ritetrp=N
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es la funcion h tal que,
AN = 3 > X > flrs)
Bpt (N) Bp? (ray)  BpP (e 0) By (T )

y se denota como

BN) =3 f(r).

Bz (N)

Observacion 3.12 Sean f € A*(N*), p € N. Entonces diremos que f es su funcidén
iterada de grado 0 sobre el operador

)
T T
T1+m+»,‘p:N 1 p

y denotaremos esto como

FINY =37 f(rs).

BE(N)

Definicién 3.13 Sean f € A*(N*) y p,m € N. Diremos que la funcidn iterada dual

de grado m sobre el operador
> )
Ty \T1 T )
es la funcion h tal que,
FNy= >0 > > Y. hlrs,)
Bpt (N) B2 (ray) B2 (ra,_ ) By (rapy_y)

y se denota como

BN) =3 ().

BEZ(N)
Definicién 3.14 Sean p € N | m € Z. Entonces definimos la siguiente funcion
T, (N) = Z"Hu(m =1).
Bz (N)

Definicién 3.15 Para cualesquiera funciones f,g € A*(N*) y p € N se define el
producto de Cauchy s, sobre el operador

> )
Pt rp=N T Tp
como la funcién h talque
N
= > (N ) s,
ISRERTS
T+ trp=N

donde i # j y se denota como, h(N) = f(N) xs, g(N).
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Entonces resulta inmediato lo siguiente

Observacién 3.16 Sean fi,..., fv , g1,..,9w , [y g en A*(N*) tales que

S (LN, e = i)

entonces

> (N ) neneaeo= 2 (LN Vet aueane) wen

,8;1,.,.,%,1,3(]\[) ﬂ;l""’rw’s(N)

Teorema 3.17 (Version Multinomial) Para cualquier funcion f se tiene que

S o= X (N )eeane)  wmenvmez

Bz, (N) r1+...+rp=N

17
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4. Problemas

En esta seccién se exponen algunos problemas concernientes a la suma sobre multi-
indices, los de tipo tedrico se presentaron en mi|Tesis de Licenciatura,| con la intencién
de hacer notar que con las minimas definiciones y con la notacién adecuada las carac-
teristicas propias para el caso de multi-indices son de caricter inmediato, aqui hemos
optado por también agregar algunos problemas de tipo numérico para afianzar los
conceptos presentados.

Problema 4.1 Utilizar la Definicién y la Definicion para demostrar lo
siguiente;

i) Probar que
Zn: {l]zemz(n) VneN, YmeZ y VzeC
k_l[m,ez(n)] k

it) Sean f € A(N) y Vz € C. Demostrar que

n

Z[m,ez<n)] FB) =" Om(k)f(n+1—k) Vn € N,VYm € Z
k=1 k=1
Solucion.

i) Para m = 0 es claro, entonces solo debemos verificar los siguientes casos

(a)

n n ko
1 1
Z[mﬂz(n)] [%} = D bt l—kn) 3 Ou(ka 1 k) {171]

k=1 km=1 k1=1

= 6.(n)x---x0.(n) = Om=z(n) VYn,m € N,Vz € C

(b) Para m < 0 se sigue de la Definicion y del inciso anterior.

i1) Es inmediata de la Deﬁnicién y del Teorema usando el inciso anterior.
|
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Problema 4.2 Sean f € A(N) y z € C, entonces veamos lo siguiente

Definicion 3a. Para cualquier w € C diremos que la funcién 0}y, 9_(n)(n) estd
dada como

9[wygz(n)](n) = Ou: (n) Vn € N.

Definicion 8b. Diremos que la funcidn iterada de grado w de f respecto de 6,(n),
es una funcion aritmética g tal que

= Opuo.y(n+1—k)f(k)¥n €N

k=1

y la denotaremos como

Z[w 6z (n)]

FEsto es
9(n) = O,y (n+1— k) f(k)
k=1
Utilizar lo anterior para demostrar que para cualquiera f, g, h y p funciones
aritméticas tales que Vn € N y Yw € C

n

sz oy T = 9(7)

k=1

se tiene que

an+1— Zhn+1—k g(k) YeN y VzeC.

Solucion. Se stque del Problema - y de las propiedades de la convolucion de
Cauchy.
|

Problema 4.3 Utilizar el Problema , la Observacion y la Definicion
para probar que

Om(n) = Om-1y(p-1)+1(n) Vp,n €N, Vm e Z

esto es

Yoy =1) = Om-yp-n41(n)

Hp(n)

19
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Solucion. Primero, sabemos que

> Oo(ke) =1,

pp(n)

entonces utilizando la Observacion [3.3 esto es equivalente a

n

Oo(k) =1
Z[l,epﬂ(n)] o(k)

k=1

Por lo tanto ©o(n) = 02_p(n).
Por otra parte, aplicando lo visto en el Problema y la Definicion [3.17) se

tiene que

Om(n) = Zméo(kr)
pp(n)

n

Z[m,ep_1<n>] o(k)

k=1

= D Omp-1)(k)Oo(n+1—k)
k=1

= D Omp-1) (k)02 p(n+1—k)
k=1

= Q(m_l)(p_1)+1(n) Vn € N,Vm € Z.

Problema 4.4 Para cualquier f € A(N) y p € N definimos lo siguiente:

Definicion 3c. Para toda z € C diremos que la funcién ©,(n) estd dada como

0:(n) = 0z—1)(p-1)41(n) Vn € N.

Definicion 3d. Diremos que la funcion iterada de grado z sobre el operador

> 0]

pp(n)
de la funcion f, estd dada por

S fk) = > Oa(k)f(k) Wn € N.

,u,;(n) ki+...+kp=n+p—1

Utilizando lo anterior, probar lo siguiente:
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> Oy (k1) Ou, (kp) = Ouy4eotapti-p(n) V€N, Vai,..,z, €C
ki+...+kp=n+p—1
i)
> Ouy (k1) - 0u, (kp) = Ozy 4oty (n) VR EN, Vai,..,z, € C
ki+...+kp=n+p—1
iii)
> Oz, (k1) -0, (kp—1) f(kp) = f(n) VYn €N
ki+...+kp=n+p—1
st, y solo st,
14+ 2p-1=0 y x1,.,2p-1 €C.
w)
Yo Ou (k1) Ou, (kp-1)f(kp) = f(n)  VneN
ki+...+kp=n+p—1
st, y solo st,
14 Frp1=p—2 sip#l, ¢ x1=0 sip=1.
Solucion.

i) Sabemos que

Z éw1(kl)"'érp(kp) = (:)961 (n) **(:)Ep(n)
ki+...+kp=n+p—1

= Oa-1)p-1+1(n) * - %0z 1y (p-1)+1(N)

= Optogapt1pn) VneN Ve, ..,z,eC

1) Andlogamente al inciso anterior

Oy % - % 0z, (n)

> Oz, (k1) - -0z, (Kp)

ki1+...+kp=n+p—1
= Ouytta,(n) VneEN, Vg, .. 2, €C

i11) Primero veamos lo siguiente

Z 0z, (kl) ) '01‘;771 (klpfl)f(kp) = 0 (n) ook 995;771 (n) * f(n)

K1+ Akp=ntp—1
Oy 4 tap(n) * f(n) VYneN
y como 0y (n) x f(n) = f(n) < w =0, entonces se tiene lo pedido.
iv) Andlogamente,

611 (kl) ' '@Ip—l (kpfl)f(kp) = 611 (n) H ook 61;7—1 (n) * f(n)

ki+...+kp=n+p—1
= bai+tapr2-pp-n(n) x f(n) VneN

y como Oy (n) x f(n) = f(n) < w =0, entonces se tiene lo pedido.
|
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Problema 4.5 Para cualquier f € A*(N*) y p € N definimos lo siguiente:

Definicion 4c. Para toda z € C diremos que la funcidn V.(N) estd dada como,

V= (N) = Yi-np-pa(N) = (= D -1+ DV

Definicion 4d. Diremos que la funcion iterada de grado z sobre el operador
> L]
B2 (N)

de la funcién f , estd dada por

2 f) = >, (TI.Z.V.TP)%m)f(m) ¥peN.

BE(N) rid =N

Utilizando lo anterior, probar lo siguiente:

N
Z (7"1 N ) Uo (r1) - Uo,(rp) = Vorgoqap+1-p(N) VpEN, Vay, .. 2, €C
ri+...+rp=N P

ii)

) <r1 v rp) ar (1) by (rp) = Py gty (N) VP EN, Var,.omy € C
ri+...+rp=N
N
S (N ) et s = 1) e
r1+...+rp=N

st, y solo st,
1+ Fxp-1=0 y x1,..,2p-1 €C.

i)
S (N, )t ) = ) e
1+ +rp=N P

s, y solo st,
1+ +xp1=p—2 sip#l, ¢ x1=0 sip=1.

Solucion. Andlogamente al problema anterior. |
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Problema 4.6 Sean n,p € N y z € C\ {0,1} Demostrar que

> o+ > <xi1>%: v <xi1)p

ki+-tkpp1=n+p S1+tspp1=n+tp

Solucion. Sabemos que

n

k=1

entonces por la Observacion [3.2 se tiene que

> o > (JJST: z" (xf1>p.

ki+-+kpy1=n+p st tspp1=n+tp

k d x " o n x m
me + z:ln<m1) =z <7m71> Vn,m € NyVz € C\ {1}.
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