
Linealidad de la iteración del operador

Suma sobre multi-́ındices

Mat. Enrique Torres Miguel
kike torres@ciencias.unam.mx

21 de agosto de 2022

Resumen

Se estudia la propiedad lineal del operador Σ sobre multi-́ındices
representados por composiciones de números naturales, en analoǵıa al

caso concencional de iteración, se presenta el teorema de linealidad en la
iteración y se muestra que el teorema multinomial es una resultado

particular de esta propiedad.

1. Introducción

Las sumas sobre las funciones aritméticas cuando la operación se realiza
sobre particiones con repetición de un número natural no es algo que se estudie
a menudo, esto hace parecer que realizar iteraciones para este caso resulte una
tarea nada grata. Sin embargo, una vez que se tienen los elementos necesarios
es sorprendente la facilidad con la se van dando los conceptos y los resultados.
El primer paso es entender el concepto de partición y partición con repetición
de un número natural.

1.1. Particiones de un número natural

Definición 1.1 Una partición de un número natural w es una suma de números
naturales cuyo total es w en la que es irrelevante la repetición y orden de los
sumandos, también se considera a w como una partición de si mismo.

Para ver un ejemplo de esto consideremos el número 7,

Ejemplo 1.2

7 = 1 + 1 + 1 + 1 + 1 + 1 + 1 = 3 + 3 + 1 = 2 + 2 + 2 + 1 = 5 + 2

= 4 + 2 + 1 = 1 + 1 + 5 = 4 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 2

= 3 + 4 = 6 + 1 = 2 + 2 + 1 + 1 + 1 = 2 + 3 + 1 + 1 = 2 + 2 + 3

= 3 + 1 + 1 + 1 + 1,
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Como se puede advertir en el ejemplo anterior, en las particiones el orden
de los sumando es irrelevante pues

3 + 3 + 1 = 3 + 1 + 3 = 1 + 3 + 3,

representan la misma partición de 7. Normalmente a las permutaciones de los
sumando en las particiones se les conoce como composiciones o particiones con
repetición.

Por otra parte, notemos otra caracteŕıstica de las particiones del número 7,

7 = 7

= 6 + 1 = 4 + 3 = 5 + 2

= 4 + 2 + 1 = 1 + 3 + 3 = 2 + 2 + 3 = 5 + 1 + 1

= 4 + 1 + 1 + 1 = 2 + 2 + 2 + 1 = 2 + 3 + 1 + 1

= 3 + 1 + 1 + 1 + 1 = 2 + 2 + 1 + 1 + 1

= 2 + 1 + 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1 + 1 + 1

Como podemos ver las particiones pueden clasificarse según el número de su-
mandos.

Observación 1.3 Sea w ∈ N, entonces se tiene lo siguiente

i) ∀p ∈ N con 1 ≤ p ≤ w, existe al menos una partición de w con exactamente p
sumandos, es decir, w = k1 + · · ·+ kp.

Esto es inmediato pues basta considerar ki = w − p+ 1 y kj = 1∀j ̸= i

ii) Para cualquier partición de p elementos tal que w = k1 + · · · + kp se tiene
que,

n = w− p+ 1 ≥ ki ∀i

Por el inciso anterior, es claro que n es un sumando de al menos una parti-
ción de p elementos de w, por lo tanto solo falta ver que es mayor o igual que
cualquier sumando de cualquier partición de p elementos.
Demostración.

Sin pérdida de generalidad podemos descartar la partición trivial, esto es
cuando p = 1 ya que es inmediato, ahora supongamos que existe una partición
de w tal que w = k1 + · · · + kp y ki > n para algún i. Recordemos que para
cualquier partición 1 ≤ kj , entones sumando las desigualdades ∀j ̸= i se tiene
que

p− 1 ≤
∑
∀j ̸=i

kj

y como suponemos que n < ki, entonces sumando las dos desigualdades ante-
riores se tiene que

n+ p− 1 < ki +
∑
∀j ̸=i

ki = k1 + · · ·+ kp
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lo cual es un absurdo pues w = k1 + · + kp y n = w − p + 1. Claro el absurdo
surge de suponer que existe un sumando de alguna partición de p elementos,
mayor que n.

■

Ahora que ya contamos con lo necesario podemos empezar a establecer la
idea de iteraciones para el caso de multi-́ındices.

1.2. Suma sobre multi-́ındices versión convencional

De forma usual se denota al conjunto de las funciones aritméticas como
A(N) = {f | f : N → C} . Recordemos el caso cuando solo se utiliza un indice
en la sumatoria. Sea f ∈ A(N) y n ∈ N. La función suma de f definida por el
operador Σ, es la función aritmética g tal que

g(n) =

n∑
k=1

f(k) = f(1) + · · ·+ f(n).

Aqúı es donde comienza el análisis que nos ayudará a entender la sumatoria
sobre varios ı́ndices, pues la expresión anterior pude ser descrita y entendida de
una forma diferente, veamos el porque.

Cuando escribimos la expresión,

n∑
k=1

f(k)

se puede considerar de forma equivalente como la suma sobre las composiciones
de dos elementos de un número natural, es decir,

n∑
k=1

f(k) =
∑

k+s=n+1

f(s).

Explicar porque esta equivalencia es cierta es sencillo, ya que todas las com-
posiciones de dos elementos del número n+1 son de la forma k+(n+1−k) = n+1
donde 1 ≤ k ≤ n.

Sin embargo, la naturaleza de las expresiones

n∑
k=1

f(k)

y ∑
k+s=n+1

f(s),

pese a denotar la misma suma, es muy diferente y por tal motivo merecen un
estudio a detalle.
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Primero,
n∑

k=1

f(k),

se entiende como la indización los sumandos empleando el orden usual de los
números naturales, pues recordemos que la suma se realiza sobre funciones
aritméticas entonces resulta inmediato la elección natural en el orden de los
valores,

n∑
k=1

f(k) = f(1) + f(2) + · · ·+ f(n− 1) + f(n).

Por otra parte, al denotar ∑
k+s=n+1

f(k),

como se ha mencionado, se considera las composiciones de dos elementos del
número n+1 de la forma k + (n + 1 − k) = n + 1 siendo 1 ≤ k ≤ n, claro
la elección de los sumandos también puede considerarse con el orden usual por
la relación intŕınseca que existe en ambos casos. Sin embargo, la naturaleza
de este caso se pone de manifiesto en el caso general, cuando se consideran
composiciones de p elementos de un número natural w, el orden usual en la
elección los sumando carece de sentido por las repeticiones en la forma que se
puede escindir el número w y por otro lado, se presenta el reto de definir de
forma adecuada la suma sobre composiciones arbitrarias aplicadas a todas la
funciones aritméticas sin la necesidad de prescindir de casos particulares, en
concreto lo que se pretende es logar que la siguiente expresión tenga sentido
para cualquier función aritmética f,∑

k1+···+kp=w

f(ki).

Existen diversas e interesantes formas de definir las sumas sobre compo-
siciones de números naturales, la que se ha elegido ayuda a converger los re-
sultados del caso convencional de suma de funciones aritméticas y está estre-
chamente ligada con las dos propiedades estudiadas en la Observación1.3.
Primero, necesitamos pensar la forma adecuada para correr la suma sobre
k1+k2 · · ·+kp−1+kp = w, es decir, sobre composiciones arbitrarias de números
naturales, esto es sencillo ya que como puede notarse en el caso de composicio-
nes de dos elementos, hay que considerar un parámetro fijo de la composición y
realizar la suma sobre todos los valores posibles de ese parámetro, al hacer esto
es necesarios aclarar que no se considera el orden usual de los números natura-
les, pues el parámetro depende únicamente de la composición en cuestión y por
otra parte, es irrelevante el parámetro a determinar ya que al trabajar sobre
composiciones de un número w, todos los sumando puede tomar cada valor de
dicha composición por la definición de composición de números naturales.
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Segundo e igualmente importante, el otro reto es eludir los casos indetermi-
nados, pues es claro que la expresión k1 + k2 · · · + kp−1 + kp = w, carece de
sentido śı el número de sumandos es mayor a w. Pero esto se resuelve de forma
inmediata al decir que trabajamos sobre composiciones de números naturales,
estamos considerando solo expresiones k1+k2 · · ·+kp−1+kp = w bien definidas,
es más, la Observación1.3 nos sirve para desarrollar de una forma más eficien-
te la expresión anterior pues cada composición de p elementos tiene una manera
canónica de escindir a w, esto es, w = np + p− 1 donde np es el máximo de los
sumandos de cualquier partición de p elementos del número w. Aśı la expresión
k1+k2 · · ·+kp−1+kp = w será escrita como k1+k2 · · ·+kp−1+kp = np+p−1,
de esta manera la suma se realizará sobre todos lo valores naturales de np para
composiciones de p elementos.

Definición 1.4 Sea f ∈ A(N) y p ∈ N. Diremos que la suma sobre muilti-
ı́ndices de la función f, es la función aritmética h tal que

h(np) = f(k1
1,··· ,k1

r ,··· ,k1
p)
(k1r) + · · ·+ f(km

1 ,··· ,km
r ,···ki

p)
(kmr )

donde kx1 + · · ·+ kxp = np + p− 1, f(kx
1 ,··· ,kx

r ,··· ,kx
p)
(kxr ) = f(kxr )

y se denotará como,

h(np) =
∑

k1+···+kp=np+p−1

f(kr) =
∑
µr
p(n)

f(kr)

En la notación anterior r indica la posición del sumando en la composición
sobre el que se aplicará la suma y se omite la referencia que np es el máximo
de los sumando ya que tomara todos los valores naturales y como puede verse
la suma considera a todas las composiciones de p elementos. Para entender esta
definición mostraremos un ejemplo considerando composiciones de 4 elementos
para una función aritmética f arbitraria evaluando los primeros tres valores
naturales.
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Ejemplo 1.5

h(1) =
∑
µ3
4(1)

f(k3)

=
∑

k1+k2+k3+k4=1+4−1

f(k3)

= f(1,1,1,1)(1) = f(1),

h(2) =
∑
µ3
4(2)

f(k3)

=
∑

k1+k2+k3+k4=2+4−1

f(k3)

= f(1,1,1,2)(1) + f(1,1,2,1)(2) + f(1,2,1,1)(1) + f(2,1,1,1)(1)

= 3f(1) + f(2),

h(3) =
∑
µ3
4(3)

f(k3)

=
∑

k1+k2+k3+k4=3+4−1

f(k3)

= f(1,1,1,3)(1) + f(1,1,3,1)(3) + f(1,3,1,1)(1) + f(3,1,1,1)(1) +

f(2,2,1,1)(1) + f(2,1,2,1)(2) + f(1,1,1,2)(1) + f(1,2,2,1)(2) +

f(1,2,1,2)(1) + f(1,1,2,2)(2)

= 6f(1) + 3f(2) + f(1).

Una vez entendida la definición y notación anterior, se puede trabajar sin
escritura excesiva, pues saber que la suma se realiza sobre todas las particiones
de p elementos y que p es un parámetro fijo hacen más amigable el desarrollo
de los resultados.

1.3. Suma sobre multi-́ındices versión multinomial

Para esta versión denotaremos a las funciones aritméticas definidas o exten-
didas en cero como A∗(N∗) = {f | f : N ∪ {0} → C} .

Recordemos que todas composición de p elementos tiene una representación
canónica, k1+· · ·+kp = np+p−1, donde np es el máximo de todos los sumandos,
pero esta expresión, a su vez, se puede rescribir como,

(k1 − 1) + · · ·+ (kp − 1) = np − 1.

Y como en el caso anterior la suma se hace correr sobre todos los valores natura-
les de np entones esta expresión puede considerarse de forma equivalente como
r1 + · · ·+ rp = Np, donde r1, ..., rp, Np ≥ 0. Es claro que se consideran sumas
no negativas de p elementos, de un número no negativo Np. Aśı por analoǵıa al
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caso caso anterior podemos establecer la suma sobre un operador que involucre
a los coeficientes multinomiales,

Definición 1.6 (Versión multinomil) Sea f ∈ A∗(N∗) y p ∈ N. Diremos que
la suma de la función f sobre muilti-́ındices respecto del operador∑

r1+···+rp=Np

(
Np

r1 · · · rp

)
,

es la función h tal que,

h(Np) =
∑

r1+···+rx+···+rp=Np

(
Np

r1 · · · rx · · · rp

)
f(r1,··· ,rx,··· ,rp)(rx)

donde r1 + · · ·+ rx + · · ·+ rp = Np, f(r1,··· ,rx,··· ,rp)(rx) = f(rx)
y se denotará como,

h(Np) =
∑

βx
p (Np)

f(rx).

Nuevamente, x solo denota la posición del sumando sobre el cual se correrá la
suma y como esta se aplica para todo Np ≥ 0, entonces se puede prescindir del
sub́ındice p para considerar solo el termino N ≥ 0.

2. Iteraciones

2.1. Iteraciones versión convencional

En esta sección se emplearán definiciones y notaciones usadas para el caso
convencional de suma del operador suma sobre funciones aritméticas, no se
profundizará en ellos, se pueden consultar las referencias para un estudio clásico
y conciso, aqúı se opta por desarrollar los conceptos expuestos presentado en mi
Tesis de Licenciatura. Primero, recordemos algunas definiciones,

Definición 2.1 Sea f ∈ A(N) y m ∈ N. La función iterada de grado m de f
respecto al operador Suma, es la función aritmética h tal que

h(n) =

n∑
k1=1

k1∑
k2=1

· · ·
km−2∑

km−1=1

km−1∑
km=1

f(km).

y se denota como
n∑

m
k=1

f(k)

esto es,
n∑

m
k=1

f(k) =

n∑
k1=1

k1∑
k2=1

· · ·
km−2∑

km−1=1

km−1∑
km=1

f(km).
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Observación 2.2 Para cualquier función aritmética f, se define a la misma
función f como su función iterada de grado 0 y esto se denota como

n∑
0

k=1

f(k) = f(n).

Análogamente se tiene que.

Definición 2.3 Sea f ∈ A(N) y m ∈ N. La función iterada rećıproca o dual de
grado m respecto al operador Suma de la función f, es una función aritmética h
tal que

f(n) =

n∑
k1=1

k1∑
k2=1

· · ·
km−2∑

km−1=1

km−1∑
km=1

h(km)

y se denota como
n∑

−m
k=1

f(k).

Definición 2.4 Sean n ∈ N, m ∈ Z. Entonces se define la siguiente función
como

θm(n) =

n∑
m

k=1

[
1

k

]
Por lo tanto, de las definiciones anteriores se puede demostrar que ∀n ∈ N

θm(n) =



(
m+ n− 2

n− 1

)
, m > 0,[

1
n

]
, m = 0,

(−1)n−1

(
−m
n− 1

)
, m < 0.

Y con ellos se obtiene el seguiente resultado,

Teorema 2.5 Para cualquier función aritmética f se tiene que

n∑
m

k=1

f(k) =

n∑
k=1

θm(n+ 1− k)f(k) ∀n ∈ N,∀m ∈ Z

La demostración es básica por inducción.

Por otra parte, recordemos que las generalizaciones de los factoriales complejos son
las siguientes,

zn = z(z − 1)...(z − n+ 1)

zn = z(z + 1)...(z + n− 1)

Y cumple la siguiente relación,

zn = (−1)n(−z)n

Por lo tanto, los factoriales pueden ser descritos en términos de la función Gamma,
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zn = Γ(z+n)
Γ(z)

ℜ(z) > 0

z−n = (−1)n 1
(1−z)n

Aśı, usando las propiedades anteriores podemos extender la función θz(n).

Definición 2.6 Para cualquier z ∈ C y ∀n ∈ N definimos la función θz(n) como;

θz(n) =


(z)n−1

(n− 1)!
, ∀z ̸= 0 ,[

1
n

]
, z = 0.

Y por otra parte,

Definición 2.7 Sea f ∈ A(N) y z ∈ C . Diremos que la función iterada de grado z de
la función f, es una función aritmética g tal que

g(n) =

n∑
k=1

θz(n+ 1− k)f(k)

y la denotaremos como
n∑

z
k=1

f(k).

Definición 2.8 Sean f ∈ A(N) y m ∈ N. Diremos que la función iterada de grado m
de f respecto de la función aritmética g es una función aritmética h tal que

h(n) =

n∑
k1=1

g(n− k1 + 1)

k1∑
k2=1

g(k1 − k2 + 1) · · ·
km−2∑

km−1=1

g(km−2 − km−1 + 1)

km−1∑
km=1

g(km−1 − km + 1)f(km)

y la denotaremos como
n∑

[m,g(n)]
k=1

f(k).

Definición 2.9 Sea f ∈ A(N), entonces diremos que f es su función iterada de grado
0 respecto de g y denotaremos esto como

n∑
[0,g(n)]

k=1

f(k) = f(n).

Definición 2.10 Sean f, g ∈ A(N) con g(1)̸=0 y m ∈ N . Diremos que la función
iterada dual de grado m f respecto de la función g es una función aritmética h tal que

f(n) =

n∑
k1=1

g(n− k1 + 1)

k1∑
k2=1

g(k1 − k2 + 1) · · ·
km−2∑

km−1=1

g(km−2 − km−1 + 1)

km−1∑
km=1

g(km−1 − km + 1)h(km)

y la denotaremos como
n∑

[−m,g(n)]
k=1

f(k).
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Observación 2.11 Es claro que sin la restricción g(1)̸=0 se tiene una definición ab-
surda y la respuesta es simple, si g(1)=0 y f(1)̸=0, entonces no es posible hallar una
función h tal que f(1)=g(1) h(1). Con esto podemos ver que la existencia de

n∑
[−m,g(n)]

k=1

f(k)

depende de la naturaleza de la función g y es independiente de la función aritmética f
sobre la cual se trabaja.

Definición 2.12 Sean n ∈ N , m ∈ Z y g ∈ A0(N). Entonces definimos la siguiente
función

θ[m,g(n)] (n) =

n∑
[m,g(n)]

k=1

[
1

k

]
.

Teorema 2.13 Sean g, f ∈ A(N) talque g(1) ̸=0 , entonces tenemos que

n∑
[m,g(n)]

k=1

f(k) =

n∑
k=1

θ[m,g(n)] (k)f(n− k + 1) ∀n ∈ N, ∀m ∈ Z

La demostración se realiza por inducción, optaremos por omitirla.

Hasta este punto se ha presentado básicamente la mayoŕıa de la teoŕıa para el caso
convencional. Sobre esto, conviene decir que era necesario para fundamentar sólida-
mente la suma sobre muti-́ındices, para finalizar recordemos el producto o convolución
de Cauchy para funciones aritméticas.

Definición 2.14 Para cualesquiera funciones f, g ∈ A(N) se dice que el producto de
Cauchy es una función aritmética h talque

h(n) =

n∑
k=1

f(n+ 1− k)g(k) ∀n ∈ N.

y se denota como
h(n) = f(n) ∗ g(n)

2.2. Iteraciones versión binomial

Este apartado es necesario para entender de forma clara las iteraciones para el
caso de multi-́ındices de la versión multinomial y al ser de carácter elemental, no se
detallarán los conceptos ya que por analoǵıa con el caso convencional son inmediatos.

Definición 2.15 Para cualesquiera funciones f, g ∈ A∗(N∗) se dice que el producto
de Cauchy sobre el operador

N∑
r=0

(
N

r

)
,

es una función h talque,

h(N) =
N∑

r=0

(
N

r

)
f(N − r)g(r),

y se denota como
h(N) = f(N) ∗βg(N)
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Ahora, veamos las siguientes definiciones

Definición 2.16 Sea f ∈ A∗(N∗) y m ∈ N. La función iterada de grado m respecto

al operador
∑N

r=0

(
N

r

)
, de la función f, es una función h tal que

h(N) =

N∑
r1=0

(
N

r1

)
· · ·

rm−2∑
rm−1=0

(
rm−2

rm−1

) rm−1∑
rm=0

(
rm−1

rm

)
f(rm)

y se denota como

h(N) =

N∑
m

r=0

(
N

r

)
f(r).

Observación 2.17 Para cualquier función f, se define a la misma función f como su

función iterada de grado 0 respecto al operador
∑N

r=0

(
N

r

)
, y esto se denota como

f(n) =

N∑
0

r=0

(
N

r

)
f(r).

Análogamente se tiene que.

Definición 2.18 Sea f ∈ A(N) y m ∈ N. La función iterada rećıproca o dual de grado

m respecto al operador
∑N

r=0

(
N

r

)
, de la función f, es una función h tal que

f(N) =

N∑
r1=0

(
N

r1

)
· · ·

rm−2∑
rm−1=0

(
rm−2

rm−1

) rm−1∑
rm=0

(
rm−1

rm

)
h(rm)

y se denota como

h(N) =

N∑
−m

r=0

(
N

r

)
f(r).

Definición 2.19 Sean n ∈ N, m ∈ Z. Entonces se define la siguiente función como

ψm(N) =

N∑
m

r=0

(
N

r

)[
1

r + 1

]
Por lo tanto, de las definiciones anteriores se puede demostrar que,

ψm(N) =

{
mN , m ̸= 0,[

1
N+1

]
, m = 0.

Y con ello, se obtiene el siguiente resultado,

Teorema 2.20 Para cualquier función f se tiene que

N∑
m

r=0

(
N

r

)
f(r) =

N∑
m

r=0

(
N

r

)
ψm(r)f(N − r) m ∈ Z

La demostración es básica por inducción.
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Por otra parte, se puede extender la definición a números complejos, de la siguiente
forma.

Definición 2.21 Para cualquier z ∈ C definimos la función ψz(N) como;

ψz(N) =

{
zN , z ̸= 0,[

1
N+1

]
, z = 0.

Por lo tanto, se puede hacer una extensión compleja.

Definición 2.22 Sea f ∈ A∗(N∗) y z ∈ C . Diremos que la función iterada de grado

z de la función f respecto al operador
∑N

r=0

(
N

r

)
, es una función h tal que

h(n) =

N∑
z

r=0

(
N

r

)
ψz(r)f(N − r)

y la denotaremos como

h(N) =

N∑
z

r=0

(
N

r

)
f(r)

3. Iteraciones sobre multi-́ındices

De igual forma a lo anteriormente realizado, trataremos dos caso el convencional
y su forma multinomial.

3.1. Caso convencional

Veamos lo siguiente.

Observación 3.1 Sean f1, · · · , fp funciones aritméticas tales les que

f(n) =

n∑
k1=1

f1(n−k1+1)

k1∑
k2=1

f2(k1−k2+1) · · ·
kp−2∑

kp−1=1

fp−1(kp−kp−1+1)

kp−1∑
kp=1

fp(kp) ∀n, p ∈ N.

Entonces se tiene que,

f(n) =
∑

k1+···kp=n+p−1
1≤krk

≤n

ri ̸=rj 1≤i,j,k≤p

f1(kr1) · · · fp(krp) ∀n, p ∈ N.

Esto es claro, ya que f(n) = f1(n)∗· · ·∗fm(n) es un producto conmutativo y asociativo.

Observación 3.2 Para cualquier p ∈ N y para toda f ∈ A(N) se tiene que∑
µr
p(n)

f(kr) =

n∑
p−1

k=1

f(k) ∀n ∈ N

entonces utilizando la Definición 2.8 esto es equivalente a∑
µr
p(n)

f(kr) =

n∑
[1,θp−1(n)]

k=1

f(k) ∀n ∈ N.

12
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Ya tenemos lo necesario para definir las iteraciones para el caso de muti-́ındices.

Definición 3.3 Sean f ∈ A(N) y p ∈ N. Diremos que la función iterada de grado m
sobre el operador ∑

µr
p(n)

[ ]

de f, es una función aritmética h tal que

h(n) =
∑

µ
r1
p (n)

∑
µ
r2
p (kr1

)

· · ·
∑

µ
rm−1
p (km−2)

∑
µ
rm
p (krm−1

)

f(krm) ∀n ∈ N

y la denotaremos como ∑
m

µr
p(n)

f(kr).

De igual forma que en la Definición 1.6, mostraremos un ejemplo considerando
composiciones de 4 elementos para una función aritmética f arbitraria evaluando los
primeros dos valores naturales en las dos primeras iteraciones.

h(1) =
∑

2
µ3
4(1)

f(k3)

=
∑
µ3
4(1)

∑
µ3
4(k

1
3)

f(k3)

=
∑

k1+k2+k3+k4=1+4−1

 ∑
µ3
4(k3)

f(k3)


=

∑
µ3
4(1,1,1,1)

(1)

f(k3) =
∑
µ3
4(1)

f(k3)

=
∑

k1+k2+k3+k4=1+4−1

f(k3)

= f(1,1,1,1)(1) = f(1),

13
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h(2) =
∑

2
µ3
4(2)

f(k3)

=
∑
µ3
4(2)

∑
µ3
4(k

1
3)

f(k3)

=
∑

k1+k2+k3+k4=2+4−1

 ∑
µ3
4(k3)

f(k3)


=

∑
µ3
4(1,1,1,2)

(1)

f(k3) +
∑

µ3
4(1,1,2,1)

(2)

f(k3) +
∑

µ3
4(1,2,1,1)

(1)

f(k3) +
∑

µ3
4(2,1,1,1)

(1)

f(k3)

= 3

 ∑
k1+k2+k3+k4=1+4−1

f(k3)

+
∑

k1+k2+k3+k4=2+4−1

f(k3)

= 3f(1,1,1,1)(1) +
(
f(1,1,1,2)(1) + f(1,1,2,1)(2) + f(1,2,1,1)(1) + f(2,1,1,1)(1)

)
= 3f(1) + (3f(1) + f(2)) = 6f(1) + f(2)

Con este ejemplo breve se puede ver de forma clara como se trabaja en la iteración
sobre una función arbitraria para el caso de multi-́ındies.

Observación 3.4 Sea f ∈ A(N), entonces diremos que f es su función iterada de
grado 0 sobre el operador ∑

µr
p(n)

[ ]

y denotaremos esto como

f(n) =
∑

0
µr
p(n)

f(kr) ∀n ∈ N.

Definición 3.5 Sean f ∈ A(N) y m, p ∈ N. Diremos que la función iterada dual de
grado m sobre el operador ∑

µr
p(n)

[ ]

de f, es una función aritmética h tal que

f(n) =
∑

µ
r1
p (n)

∑
µ
r2
p (kr1

)

· · ·
∑

µ
rm−1
p (km−2)

∑
µ
rm
p (krm−1

)

h(krm) ∀n ∈ N

y la denotaremos como ∑
−m

µr
p(n)

f(kr).

Definición 3.6 Sean n, p ∈ N , m ∈ Z. Entonces definimos la siguiente función

Θ̄m(n) =
∑

m−1
µr
p(n)

(1(kr) = 1)

14
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Definición 3.7 Para cualesquiera funciones f, g ∈ A(N) y p ∈ N se define el producto
∗µp como

f ∗ µp g(n) =
∑

k1+···+kp=n+p−1

f(ki)g(kj) i ̸= j 1 ≤ i, j ≤ p ∀n ∈ N.

Entonces resulta inmediato lo siguiente

Observación 3.8 Sean f1, ..., fv , g1, ..., gw , f y g en A(N) tales que∑
µ
r1,...,rv
p (n)

f1(kr1) · · · fv(krv ) = f(n)

y ∑
µ
r1,...,rw
p (n)

g1(kr1) · · · gw(krw ) = g(n) ∀n, p ∈ N 1 < p , 1 ≤ v < p , 1 ≤ w ≤ p−v

entonces∑
µ
r1,...,rv,s
p (n)

f1(kr1) · · · fv(krv )g(ks) =
∑

µ
r1,...,rw,s
p (n)

g1(kr1) · · · gw(krw )f(ks) ∀n, p ∈ N

Teorema 3.9 (Versión para multi-́ındices) Para cualquier función aritmética f se tie-
ne que, ∑

m
µr
p(n)

f(kr) =
∑

k1+...+kp=n+p−1

Θ̄m(ks)f(kr) ∀n ∈ N, ∀m ∈ Z

3.2. Caso Mutinomial

Veamos lo siguiente.

Observación 3.10 Sean f1, · · · , fp funciones tales que

f(N) =

N∑
r1=0

(
N

r1

)
f1(r1)

r1∑
r2=0

(
r1
r2

)
f2(r2) · · ·

rm−2∑
rm−1=0

(
rm−2

rm−1

)
fm−1(rm−1)

rm1∑
rm=0

(
rm−1

rm

)
fm(rm).

Entonces se tiene que,

f(N) =
∑

r1+···+rx+···+rp=N

(
N

r1 · · · rx · · · rp

)
f1(r1) · · · fx(rx) · · · fp(rp)

Esto es claro, ya que f(N) = f1(N) ∗β · · · ∗β fm(N) es un producto conmutativo y
asociativo.

Definición 3.11 Sea f ∈ A∗(N∗) y m, p ∈ N. La función iterada de grado m de f
respecto al operador ∑

r1+···+rp=N

(
N

r1 · · · rp

)
,

15

https://mathsingular.com.mx


Este trabajo tiene licencia CC BY-SA 4.0

es la función h tal que,

h(N) =
∑

β
x1
p (N)

∑
β
x2
p (rx1

)

· · ·
∑

β
xp−1
p (rxp−a

)

∑
β
xp
p (rxp−1

)

f(rxp)

y se denota como

h(N) =
∑

m
βx
p (N)

f(rx).

Observación 3.12 Sean f ∈ A∗(N∗), p ∈ N. Entonces diremos que f es su función
iterada de grado 0 sobre el operador∑

r1+···+rp=N

(
N

r1 · · · rp

)
,

y denotaremos esto como

f(N) =
∑

0
βx
p (N)

f(rx).

Definición 3.13 Sean f ∈ A∗(N∗) y p,m ∈ N. Diremos que la función iterada dual
de grado m sobre el operador ∑

r1+···+rp=N

(
N

r1 · · · rp

)
,

es la función h tal que,

f(N) =
∑

β
x1
p (N)

∑
β
x2
p (rx1

)

· · ·
∑

β
xp−1
p (rxp−a

)

∑
β
xp
p (rxp−1

)

h(rxp)

y se denota como

h(N) =
∑

−m
βx
p (N)

f(rx).

Definición 3.14 Sean p ∈ N , m ∈ Z. Entonces definimos la siguiente función

Ψ̄m(N) =
∑

m−1
βx
p (N)

(1(rx) = 1).

Definición 3.15 Para cualesquiera funciones f, g ∈ A∗(N∗) y p ∈ N se define el
producto de Cauchy ∗βp sobre el operador∑

r1+···+rp=N

(
N

r1 · · · rp

)
,

como la función h talque

h(N) =
∑

r1+···+rp=N

(
N

r1 · · · rp

)
f(ri)g(rj),

donde i ̸= j y se denota como, h(N) = f(N) ∗βp g(N).
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Entonces resulta inmediato lo siguiente

Observación 3.16 Sean f1, ..., fv , g1, ..., gw , f y g en A∗(N∗) tales que∑
β
x1,...,xv
p (N)

(
N

r1 · · · rp

)
f1(rx1) · · · fv(rxv ) = f(N)

y ∑
β
x1,...,xw
p (N)

(
N

r1 · · · rp

)
g1(rx1) · · · gw(rxw ) = g(N) ∀, p ∈ N 1 < p , 1 ≤ v < p , 1 ≤ w ≤ p−v

entonces∑
β
r1,...,rv,s
p (N)

(
N

r1 · · · rp

)
f1(rx1) · · · fv(rxv )g(rs) =

∑
β
r1,...,rw,s
p (N)

(
N

r1 · · · rp

)
g1(rx1) · · · gw(rxw )f(rs) ∀p ∈ N

Teorema 3.17 (Versión Multinomial) Para cualquier función f se tiene que∑
m

βx
m(N)

f(rx) =
∑

r1+...+rp=N

(
N

r1 · · · rp

)
Ψ̄m(ri)f(rj) ∀n ∈ N, ∀m ∈ Z
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4. Problemas

En esta sección se exponen algunos problemas concernientes a la suma sobre multi-
ı́ndices, los de tipo teórico se presentaron en mi Tesis de Licenciatura, con la intención
de hacer notar que con las mı́nimas definiciones y con la notación adecuada las carac-
teŕısticas propias para el caso de multi-́ındices son de carácter inmediato, aqúı hemos
optado por también agregar algunos problemas de tipo numérico para afianzar los
conceptos presentados.

Problema 4.1 Utilizar la Definición 2.8 y la Definición 2.12 para demostrar lo
siguiente;

i) Probar que

n∑
[m,θz(n)]

k=1

[
1

k

]
= θmz (n) ∀n ∈ N , ∀m ∈ Z y ∀z ∈ C

ii) Sean f ∈ A(N) y ∀z ∈ C. Demostrar que

n∑
[m,θz(n)]

k=1

f(k) =

n∑
k=1

θmz (k)f(n+ 1− k) ∀n ∈ N, ∀m ∈ Z

Solución.

i) Para m = 0 es claro, entonces solo debemos verificar los siguientes casos
(a)

n∑
[m,θz(n)]

k=1

[
1

k

]
=

n∑
km=1

θz(n+ 1− km) · · ·
k2∑

k1=1

θz(k2 + 1− k1)

[
1

k1

]

= θz(n) ∗ · · · ∗ θz(n) = θmz(n) ∀n,m ∈ N,∀z ∈ C

(b) Para m < 0 se sigue de la Definición 2.10 y del inciso anterior.

ii) Es inmediata de la Definición 2.7 y del Teorema 2.13, usando el inciso anterior.
■
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Problema 4.2 Sean f ∈ A(N) y z ∈ C, entonces veamos lo siguiente
Definición 3a. Para cualquier w ∈ C diremos que la función θ[w,θz(n)](n) está

dada como
θ[w,θz(n)](n) = θwz (n) ∀n ∈ N.
Definición 3b. Diremos que la función iterada de grado w de f respecto de θz(n),

es una función aritmética g tal que

g(n) =

n∑
k=1

θ[w,θz(n)](n+ 1− k)f(k) ∀n ∈ N

y la denotaremos como
n∑

[w,θz(n)]
k=1

f(k).

Esto es

g(n) =

n∑
k=1

θ[w,θz(n)](n+ 1− k)f(k)

Utilizar lo anterior para demostrar que para cualquiera f, g, h y p funciones
aritméticas tales que ∀n ∈ N y ∀w ∈ C

n∑
[w,θz(n)]

k=1

f(k) = g(n)

y
n∑

[w,θz(n)]
k=1

h(k) = p(n)

se tiene que

n∑
k=1

f(n+ 1− k)p(k) =

n∑
k=1

h(n+ 1− k)g(k) ∀ ∈ N y ∀z ∈ C.

Solución. Se sigue del Problema 4.1 y de las propiedades de la convolución de
Cauchy.

■

Problema 4.3 Utilizar el Problema 4.1 , la Observación 3.2 y la Definición
3.14 para probar que

Θ̄m(n) = θ(m−1)(p−1)+1(n) ∀p, n ∈ N , ∀m ∈ Z
esto es ∑

m−1
µr
p(n)

(1(kr) = 1) = θ(m−1)(p−1)+1(n) .
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Solución. Primero, sabemos que ∑
µr
p(n)

Θ̄0(kr) = 1,

entonces utilizando la Observación 3.2, esto es equivalente a

n∑
[1,θp−1(n)]

k=1

Θ̄0(k) = 1

Por lo tanto Θ̄0(n) = θ2−p(n).
Por otra parte, aplicando lo visto en el Problema 4.1 y la Definición 3.14 se

tiene que

Θ̄m(n) =
∑

m
µr
p(n)

Θ̄0(kr)

=

n∑
[m,θp−1(n)]

k=1

Θ̄0(k)

=

n∑
k=1

θm(p−1)(k)Θ̄0(n+ 1− k)

=

n∑
k=1

θm(p−1)(k)θ2−p(n+ 1− k)

= θ(m−1)(p−1)+1(n) ∀n ∈ N, ∀m ∈ Z.

■

Problema 4.4 Para cualquier f ∈ A(N) y p ∈ N definimos lo siguiente:

Definición 3c. Para toda z ∈ C diremos que la función Θ̄z(n) está dada como

Θ̄z(n) = θ(z−1)(p−1)+1(n) ∀n ∈ N.

Definición 3d. Diremos que la función iterada de grado z sobre el operador∑
µr
p(n)

[ ]

de la función f , está dada por∑
z

µr
p(n)

f(kr) =
∑

k1+...+kp=n+p−1

Θ̄z(ks)f(kr) ∀n ∈ N.

Utilizando lo anterior, probar lo siguiente:
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i) ∑
k1+...+kp=n+p−1

Θ̄x1(k1)· · ·Θ̄xp(kp) = Θ̄x1+···+xp+1−p(n) ∀n ∈ N , ∀x1, ..., xp ∈ C

ii) ∑
k1+...+kp=n+p−1

θx1(k1)· · ·θxp(kp) = θx1+···+xp(n) ∀n ∈ N , ∀x1, ..., xp ∈ C

iii) ∑
k1+...+kp=n+p−1

θx1(k1)· · ·θxp−1(kp−1)f(kp) = f(n) ∀n ∈ N

śı, y solo śı,
x1 + · · ·+ xp−1 = 0 y x1, ..., xp−1 ∈ C .

iv) ∑
k1+...+kp=n+p−1

Θ̄x1(k1)· · ·Θ̄xp−1(kp−1)f(kp) = f(n) ∀n ∈ N

śı, y solo śı,
x1 + · · ·+ xp−1 = p− 2 śı p ̸= 1, ó x1 = 0 śı p = 1.

Solución.

i) Sabemos que

∑
k1+...+kp=n+p−1

Θ̄x1(k1)· · ·Θ̄xp(kp) = Θ̄x1(n) ∗ · · · ∗ Θ̄xp(n)

= θ(x1−1)(p−1)+1(n) ∗ · · · ∗ θ(x1−1)(p−1)+1(n)

= Θ̄x1+···+xp+1−p(n) ∀n ∈ N, ∀x1, ...., xp ∈ C

ii) Análogamente al inciso anterior

∑
k1+...+kp=n+p−1

θx1(k1)· · ·θxp(kp) = θx1 ∗ · · · ∗ θxp(n)

= θx1+···+xp(n) ∀n ∈ N , ∀x1, ..., xp ∈ C

iii) Primero veamos lo siguiente

∑
k1+...+kp=n+p−1

θx1(k1)· · ·θxp−1(kp−1)f(kp) = θx1(n) ∗ · · · ∗ θxp−1(n) ∗ f(n)

= θx1+···+xp(n) ∗ f(n) ∀n ∈ N

y como θw(n) ∗ f(n) = f(n) ⇔ w = 0 , entonces se tiene lo pedido.

iv) Análogamente,

∑
k1+...+kp=n+p−1

Θ̄x1(k1)· · ·Θ̄xp−1(kp−1)f(kp) = Θ̄x1(n) ∗ · · · ∗Θxp−1(n) ∗ f(n)

= θ(x1+···+xp+2−p)(p−1)(n) ∗ f(n) ∀n ∈ N

y como θw(n) ∗ f(n) = f(n) ⇔ w = 0 , entonces se tiene lo pedido.
■
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Problema 4.5 Para cualquier f ∈ A∗(N∗) y p ∈ N definimos lo siguiente:

Definición 4c. Para toda z ∈ C diremos que la función Ψz(N) está dada como,

Ψz(N) = ψ(z−1)(p−1)+1(N) = ((z − 1)(p− 1) + 1)N .

Definición 4d. Diremos que la función iterada de grado z sobre el operador∑
βx
p (N)

[ ]

de la función f , está dada por∑
z

βx
p (N)

f(rx) =
∑

r1+···+rp=N

(
N

r1 · · · rp

)
Ψz(ri)f(rj) ∀p ∈ N.

Utilizando lo anterior, probar lo siguiente:

i) ∑
r1+...+rp=N

(
N

r1 · · · rp

)
Ψx1(r1)· · ·Ψxp(rp) = Ψx1+···+xp+1−p(N) ∀p ∈ N , ∀x1, ..., xp ∈ C

ii) ∑
r1+...+rp=N

(
N

r1 · · · rp

)
ψx1(r1)· · ·ψxp(rp) = ψx1+···+xp(N) ∀p ∈ N , ∀x1, ..., xp ∈ C

iii) ∑
r1+...+rp=N

(
N

r1 · · · rp

)
ψx1(r1)· · ·ψxp−1(rp−1)f(rp) = f(N) ∀p ∈ N

śı, y solo śı,
x1 + · · ·+ xp−1 = 0 y x1, ..., xp−1 ∈ C .

iv) ∑
r1+...+rp=N

(
N

r1 · · · rp

)
Ψx1(r1)· · ·Ψxp−1(rp−1)f(rp) = f(N) ∀p ∈ N

śı, y solo śı,
x1 + · · ·+ xp−1 = p− 2 śı p ̸= 1, ó x1 = 0 śı p = 1.

Solución. Análogamente al problema anterior. ■
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Problema 4.6 Sean n, p ∈ N y x ∈ C \ {0, 1} Demostrar que

∑
k1+···+kp+1=n+p

xkr +
∑

s1+···+sn+1=n+p

(
x

x− 1

)sr

= xn
(

x

x− 1

)p

Solución. Sabemos que

n∑
m

k=1

xk +

m∑
n

r=1

(
x

x− 1

)r

= xn
(

x

x− 1

)m

∀n,m ∈ N y ∀x ∈ C \ {1}.

entonces por la Observación 3.2 se tiene que

∑
k1+···+kp+1=n+p

xkr +
∑

s1+···+sn+1=n+p

(
x

x− 1

)sr

= xn
(

x

x− 1

)p

.

■
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