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Resumen

El objetivo es mostrar una identidad obtenida por iteraciones en la
suma geométrica la cual es una relación entre los dos posibles resultados,
“éxitos” y “fracasos” en la distribución binomial negativa, nombrando a
esta propiedad como relación de complemetariedad.

Antecedente

Este es un escrito generado a partir de una entrada publicada en la pági-
na www.mathsingular.com.mx solamente se hacen mı́nimas modificaciones para
seguir la linea de la publicación original, facilitar la lectura al mayor número de
lectores.

1. Introducción

Empezaremos recordemos una de las generalizaciones dadas para la suma
geométrica, una revisión detallada de cómo se deduce esta identidad se puede
encontrar en el PDF, Linealidad de la iteración del operador y sus aplicaciones
en la suma geométrica, se sugiere solamente como contexto ya que no es relevante
para la aplicación que mostraremos a continuación.

Ejemplo 1.1 Sean n,m ∈ Nx ̸= 0, 1. Entonces se tiene lo siguiente,

n∑
k=1

(
m+ k − 2

k − 1

)
xk−1(1− x)m +

m∑
r=1

(
n+ r − 2

r − 1

)
(1− x)

r−1
xn = 1

Para los lectores que están familiarizados con términos de probabilidad es senci-
llo entender la aplicación que la identidad anterior tiene en los conceptos de
distribución binomial negativa. Sin embargo, lo que se busca es hacer ase-
quibles para todos, los conceptos que se van presentando, entonces revisare-
mos de forma superficial algunos conceptos de probabilidad, con la finalidad
de facilitar el entendimiento de lo que se pretende mostrar, cabe mencionar
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se estará utilizando en el ejemplo principal el número de visitantes del sitio
https://mathsingular.com.mx/ (1863) hasta el momento de que se publicó la
entrada original.

Experimentos tipo Bernoulli

Recordemos que un experimento tipo Bernoulli, es un experimento aleatorio,
es decir, que no podemos determinar su resultado y que tiene exactamente
dos posibles resultados, normalmente identificados como “éxito” ó “fracaso”,
comúnmente se denota la probabilidad de que suceda un “éxito” con la letra p
y a la probabilidad de que suceda un “fracaso” se le denota con la letra q.

Por lo tanto, es inmediato ver que se cumple que p + q = 1, pues por defi-
nición el experimento solamente tiene dos posibles resultados. El ejemplo más
emblemático es el lanzamiento de una moneda, en este se puede considerar co-
mo un “éxito”, el obtener uno de los dos lados de la moneda, por decir algo,
obtener una cara, y al ”fracaso”, obtener una cruz, siendo irrelevante cuál se
designe como “éxito” ó “fracaso”.

Por otra parte, la probabilidad de que alguno de los dos resultados suceda
es un número que mide el resultado posible, ejemplo se puede considerar en
el lanzamiento de la moneda a la probabilidad de que suceda un “éxito” con

p =
1

2
teniendo en cuenta que las condiciones del experimento sean las mismas

para los dos posibles resultados y coincide con la probabilidad que se obtenga

un “fracaso” definiendo aśı el valor de q =
1

2
.

Es claro que, śı de alguna forma se beneficia a alguno de los resultados su
número de probabilidad asignado aumenta, por ejemplo śı consideramos que
tirar la moneda con la cara boca arriba propicia que el resultado sea cara,

entonces el valor de p podŕıan considerarse mayor a
1

2
. En efecto, suponiendo

que se cuente con una moneda con dos caras, siempre se obtendŕıa un “éxito”,
por lo tanto p = 1 y q = 0.

2. Algunas distribuciones discretas

Ahora, retomaremos algunas nociones básicas de distribuciones para poder
revisar como se relaciona la identidad del Ejemplo 1.1 con la distribución bi-
nomial negativa. En lo siguiente se entenderá que se trabaja sobre una secuencia
de experimentos Bernoulli que suceden con las mismas condiciones, es decir, que
la probabilidad asignada a cada uno de sus posibles resultados es la misma para
cada experimento y que la secuencia de experimentos son independientes, es de-
cir que los resultados de un experimento dado no están determinados por algún
otro experimento.
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Observación 2.1 Sean p ∈ (0, 1), n,m ∈ N y k, r ≥ 0 y por otra parte defina-
mos lo siguiente,

i) x ≈ “experimento” - Una visita a este sitio web

ii) X ≈ (x1, x2, ..., xn, ...) - Visitas de este sitio web

iii) r ≈ “éxito ” - Cuándo un visitante lea una entrada del blog

iv) k ≈ “fracaso” - Cuándo un visitante no lea una entrada del blog

Una vez definido lo anterior

Distribución uniforme discreta

Dada una variable aleatoria X ∼ (x1, x2, ..., xn), esta distribución asigna
la misma probabilidad a cada resultado de un experimento y su función de
probabilidad está dada por,

P [X = xi] =


1

n
xi ∈ {x1, ..., xn} ,

0 en otro caso .

Ejemplo 2.2 La probabilidad de que un visitante lea esta entrada del blog es,

p =
1

1863
≈ 0,000536

Distribución binomial

Dada una secuencia de experimentos Bernoulli independientes, la distribu-
ción binomial X ∼ B(n, p), describe el número de r “éxitos” obtenidos en n
experimentos dados, con una probabilidad constante p de “éxito” y su función
de probabilidad está dada por,

P [X = r] =


(
n

r

)
pr(1− p)n−r 0 ≤ r ≤ n,

0 en otro caso .

Ejemplo 2.3 la probabilidad de que 4 visitantes lean una entrada del blog es,

P [X = 4] =

(
1863

4

)(
1

1863

)4 (
1− 1

1863

)1863−4

≈ 0,015307
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Distribución geométrica

Dada una secuencia de experimentos Bernoulli independientes con una pro-
babilidad constante p de “éxito”, la distribución geométrica X ∼ G(p), describe
el número experimentos necesarios para obtener un primer “éxito”, equivalen-
temente describe el número de k “fracasos” antes de obtener el primer “éxito” ,
y su función de probabilidad está dada por,

P [X = x] =


p(1− p)x 1 ≤ x (0 ≤ x− 1 = k para fracasos)

0 en otro caso .

Ejemplo 2.4 La probabilidad de que el quinto visitante haya sido el primero
en leer una entrada del blog es,

P [X = 5] =

(
1

1863

)(
1− 1

1863

)5

≈ 0,000535

Distribución binomial negativa

Dada una secuencia de experimentos Bernoulli independientes con una pro-
babilidad constante p de “éxito”, la distribución binomial negativaX ∼ BN(r, p),
describe el número x de experimentos necesarios para obtener r “éxitos”, equi-
valentemente, describe el número k de “fracasos” antes de obtener r “éxitos”,
y su función de probabilidad para X experimentos está dada por,

P [X = x] =


(
x− 1

r − 1

)
pr(1− p)x−r 1 ≤ r ≤ x

0 en otro caso .

Para “fracasos”,

P [X = k] =


(
k + r − 1

r − 1

)
pr(1− p)k 0 ≤ k

0 en otro caso .

Ejemplo 2.5 La probabilidad de que en la visita 211 se hayan acumulado 4
lectores de este blog es,

P [X = 211] =

(
211− 1

4− 1

)(
1

1863

)4 (
1− 1

1863

)211−4

≈ 0,00000011
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3. Relación de complementariedad

Análisis sobre “éxitos” y “fracasos” en la distribución binomial ne-
gativa

Ahora que ya conocemos los términos adecuados sobre la distribución bi-
nomial negativa, planteamos la aplicación en la teoŕıa de probabilidades de la
identidad mostrada en el Ejemplo 1.1.

Observación 3.1 Sean m,N ∈ N, Entonces veamos lo siguiente.

a) Supongamos que N se particiona en m elementos naturales, es decir N =
k1 + · · ·+ km. Entonces son equivalentes,

i) N tiene una representación canónica, N = nm +m− 1 donde, nm

es el máximo de los sumandos

ii) k̂1+· · ·+k̂m = nm+m−1, para cualquier partición de m sumandos

b) ∀N ∈ N tal que N = k1 + · · · + km es una partición natural, son equiva-
lentes,

iii) nm = 1 (máximo de los sumandos)

iv) N = k1 + · · ·+ kN

Por lo tanto, teniendo en cuenta lo anterior, śı X representa el número
de experimentos, entonces para cualquier partición X = k1 + r1 se tiene que
k1+r1 = (X−1)+2−1 = X, es conveniente comentar que en cualquier número
X de experimentos, siempre se pueden usar los “éxitos” y “fracasos” como una
partición, teniendo en cuenta que k1 = X ⇔ r1 = 0 ó r1 = X ⇔ k1 = 0, es
decir, que solamente se hayan obtenido “éxitos” ó “fracasos” durante los X
experimentos. Entonces usando este hecho en los valores no nulos de la función
de probabilidad de la distribución binomial negativa se tiene que,(

x− 1

r − 1

)
pr(1− p)x−r =

(
r + k − 2

r − 1

)
pr(1− p)k−1 =

(
r + k − 2

k − 1

)
pr(1− p)k−1

Solamente se uso el cambio de variable X = r + k − 1 para tomar valores
naturales en k y hay que tener en cuenta que 1 ≤ r. Por lo tanto, la función de
probabilidad para este caso se puede escribir como,

P [1 ≤ r,X = k] =


(
k + r − 2

k − 1

)
pr(1− p)k−1 1 ≤ k

0 en otro caso .

Análogamente, como sabemos que al modelar “éxitos” ó “fracasos” son com-
plementarios en X experimentos, entonces podemos aplicar el mismo cambio de
variable en la siguiente fórmula,(

x− 1

k − 1

)
(1− p)kpx−k =

(
k + r − 2

k − 1

)
(1− p)kpr−1 =

(
k + r − 2

r − 1

)
(1− p)kpr−1
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y la correspondiente función de probabilidad para el caso complementario será

P [1 ≤ k,X = r] =


(
k + r − 2

r − 1

)
(1− p)kpr−1 1 ≤ r

0 en otro caso .

Y aqúı es cuando la magia sucede, usando la identidad del Ejemplo 1.1 y
tomando las probabilidades durante los recorridos de los valores k, r en el número
X de experimentos se tiene que,

k∑
t=1

(
r + t− 2

t− 1

)
(1− p)rpt−1 +

r∑
s=1

(
k + s− 2

s− 1

)
pk (1− p)

s−1
= 1.

Es sencillo verificar las implicaciones que tiene esta identidad en la teoŕıa pro-
babilidad, veamos un ejemplo.

Ejemplo 3.2 Supongamos nos interesa modelar hasta que visita X se podŕıan
haber tenido 4 lectores, es decir, nos interesa saber la probabilidad que en la
visita X, haya habido cuatro personas que leyeron alguna entrada del blog, para
revisar esto recordemos que los “éxitos” y los “fracasos” son complementarios,
entonces X = 4 + k y teniendo en cuenta el número X de experimentos y el
número r = 4 de “éxitos” la función que modela la probabilidad es la siguiente,

g(k) = P [4, X = k]

=

(
k + 4− 2

4− 1

)
(

1

1863
)
4 (

1− 1

1063

)k−1

=

(
k + 2

k − 1

)
(

1

1863
)
4 (

1− 1

1863

)k−1

La cuestión se pone interesante, śı quisiéramos saber la probabilidad que a
lo más en la visita 1500 haya habido 4 lectores, el número de probabilidades a
sumar es algo considerable pues la solución es,

P [4, X ≤ 1500] =

1500∑
i=4

g(k)

=

1497∑
k=1

(
k + 2

k − 1

)(
1

1863

)4 (
1− 1

1863

)k−1

Pero conociendo la relación de complementariedad de los “éxitos” y de los “fra-
casos” entonces sabemos que,

P [4, X ≤ 1500] = 1−
4∑

r=1

(
1495 + r

r − 1

)(
1− 1

1863

)1497 (
1

1863

)r−1

Por lo tanto, P [4, X ≤ 1500] ≈ 0,009255
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Como se puede apreciar, no es necesario ser un experto en el tema de las pro-
babilidades para poder visualizar las aplicaciones de las identidades que surge
usando la propiedad iterativa del operador Suma, es suficiente con dejar volar
la imaginación pues la grandeza de las matemáticas hace que de alguna u otra
forma los resultados de las disciplinas matemáticas converjan. Para finalizar
esta entrada mostraremos la propiedad inmediata que surge en la relación de
complementariedad y la distribución beta.

Relación de complementariedad para la distribución beta y otras
identidades aplicadas a la probabilidad.

Como ya estamos habituados con términos de probabilidad esta sección se
hará lo más breve posible, sólo recordaremos algunos conceptos y utilizaremos
la identidad del Ejemplo 1.1. Comenzaremos recordando la definición usual de
la función beta.

Definición 3.3 ∀z, w tales que, ℜ(z),ℜ(w) ∈ R+. Se define β(z, w) como,

β(z, w) =

∫ 1

0

xz−1(1− x)w−1dx =
Γ(z)Γ(w)

Γ(z + w)

Por otra parte, retomando la identidad finita del Ejemplo 1.1 sabemos que, śı
n,m ∈ Nx ̸= 0, 1, entonces conocemos la expresión,

n∑
k=1

(
m+ k − 2

k − 1

)
xk−1(1− x)m +

m∑
r=1

(
n+ r − 2

r − 1

)
(1− x)

r−1
xn = 1.

Y manipulando la identidad anterior usando el cambio de variable

x =
y − a

b− a
,

se tiene que,

1− x = 1− y − a

b− a
=

b− a

b− a
− y − a

b− a
=

b− y

b− a
.

Entonces, sustituyendo valores en la identidad anterior se sigue que,

n∑
k=1

(
m+ k − 2

k − 1

)(
y − a

b− a

)k−1(
b− y

b− a

)m

+

m∑
r=1

(
n+ r − 2

r − 1

)(
b− y

b− a

)r−1 (
y − a

b− a

)n

= 1

Y como se está usando un cambio de variable,

x =
y − a

b− a
=⇒ dx =

dy

b− a
.
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Por lo tanto, usando la identidad anterior, integración y las propiedades de
la función beta podemos ver la siguiente observación.

Observación 3.4 Sean a ̸= b,∈ R+, n,m ∈ N,∀z, w ∈ C tales que, ℜ(z) > 0,
ℜ(w) > 0, ∀y ∈ (a, b). Entonces se tiene lo siguiente,

1)

n∑
k=1

β−1(k,m)

m+ k − 1

(
y − a

b− a

)k−1(
b− y

b− a

)m

+

m∑
r=1

β−1(r, n)

n+ r − 1

(
b− y

b− a

)r−1 (
y − a

b− a

)n

= 1

2)
n∑

k=1

m

(k +m)(m+ k − 1)
+

m∑
r=1

n

(r + n)(n+ r − 1)
= 1

3)

n∑
k=1

β−1(k,m)β−1(z, w)β(m+ z, k)

m+ k − 1
+

m∑
r=1

β−1(r, n)β−1(z, w)β(n+ w, r)

n+ r − 1
= 1

4)

n∑
k=1

β−1(k,m)

(m+ k − 1)(y − a)

∫ y

a

(
t− a

b− a

)k−1(
b− t

b− a

)m

dt+

m∑
r=1

β−1(r, n)

(n+ r − 1)(y − a)

∫ y

a

(
b− t

b− a

)r−1 (
t− a

b− a

)n

dt = 1

De igual forma que en el apartado anterior, las funciones de distribución son
los sumandos de las identidades anteriores y las aplicaciones son de carácter
inmediato.
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