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Resumen

Se presentan conceptos clásicos de la teoŕıa de los números presentes
en la definición de suma sobre los factores de un número natural,

mostrando que las iteraciones sobre este tipos de sumas satisfacen la
propiedad lineal desde un punto de vista elemental

1. Introducción

En el estudio de la teoŕıa de números, es común centrarse en ciertas propie-
dades de los números Naturales, tales como la forma de escindir a un número
natural en sus factores, especialmente en su descomposición canónica prima, es
decir, en potencias sus factores primos. En este contexto, no es de sorprender
que al definir el operador Σ sobre el conjunto de los factores de un número na-
tural, exista una relación entre las funciones aritméticas y la propiedad lineal en
la iteración del operador Suma sobre las funciones aritméticas. Por lo tanto, el
objetivo de este texto es revisar de forma breve la propiedad lineal en la itera-
ción, aplicada sobre el conjunto de factores de un número natural y mostrar su
conexión con el álgebra matricial, lo que sirve como referencia para el estudio
general de las Iteraciones sobre el operador Σ respecto de conjuntos arbitrarios
de números Naturales y su representación matricial asociada.

Comencemos con algunas definiciones usuales.

Definición 1.1 Sean n, n1, . . . nm,m ∈ N y sean p1, . . . , pm números primos
tales que n = pn1

1 · · · pnm
m . Entonces se dirá que pn1

1 · · · pnm
m es la descomposición

prima de n.
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De la definición anterior se tiene que,

Observación 1.2 Sea n ∈ N y n = pn1
1 · · · pnm

m . su factorización canónica,
entonces resulta inmediato lo siguiente,

i) d | n, es decir, d es un factor de n, śı, y solo śı, d = pa1
1 · · · pab

m donde, b ≤ m
y ai ≤ ni ∀i.

ii) d | n śı, y solo śı,
n

d
es un factor de n.

2. Iteraciones sobre el operador
∑
d|n

[ ]

Ahora, ya tenemos los conceptos necesarios para definir la suma sobre los
factores de un número natural n. Propiamente, lo que se define es un operador

aditivo
∑
d|n

[ ], sin pérdida de generalidad, asociado con las funciones aritméticas.

De forma análoga al operador

n∑
k=1

[ ], se definirán las iteraciones del operador∑
d|n

[ ] sobre A(N) y se revisará la propiedad lineal en las iteraciones.

Definición 2.1 Sea f ∈ A(N) y n ∈ N. Diremos que la suma respecto a los
factores de n de la función aritmética f , es la función aritmética h tal que

h(n) = f(d1) + · · ·+ f(dm),

donde, d1, · · · dm son todos los factores de n. Y se denotará de forma usual

como, h(n) =
∑
d|n

f(d) =
∑
n=dp

f(d).

Y por otra parte, recordemos la definición de producto de Cauchy o convo-
lución.

Definición 2.2 Sean f, g ∈ A(N) se dice que el producto de Cauchy de las
funciones f y g es una función aritmética h talque,

h(n) =
∑
d|n

f(d)g(
n

d
) =

∑
n=dp

f(d)g(p)

y la se denota de forma usual como, h(n) = f(n) ⋆ g(n).

De la Definición 2.2 es inmediato que, = f(n) ⋆ g(n) = g(n) ⋆ f(n).
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Una vez que se ha definido el operado
∑
d|n

[ ] sobre las funciones aritméti-

cas, vamos a proceder con las definiciones comunes, utilizando nuestra notación
iterativa.

Definición 2.3 Sea f ∈ A(N) y r, n ∈ N. Diremos que la función iterada de

grado r de la función f sobre el operador
∑
d|n

[ ], es una función aritmética h tal

que

h(n) =
∑
d1|n

∑
d2|d1

· · ·
∑

dr−1|dr−2

∑
dr|dr−1

f(dr)

y la denotaremos como ∑
r

d|n

f(d).

Definición 2.4 Sea f ∈ A(N). Diremos que la función f, es su iterada de grado

0 sobre el operador
∑
d|n

[ ] y lo denotaremos como,

f(n) =
∑

0
d|n

f(d).

Definición 2.5 Sea f ∈ A(N), n, r ∈ N. Diremos que la función iterada inversa

de grado -r de la función f sobre el operador
∑
d|n

[ ], es una función aritmética

h tal que

f(n) =
∑
d1|n

∑
d2|d1

· · ·
∑

dr−1|dr−2

∑
dr|dr−1

h(dr)

y la denotaremos como, ∑
−r

d|n

f(d).

Como es usual en la teoŕıa anaĺıtica de los números, representaremos a la
función divisor como δ, es decir, la función que da el número de divisores de un
número natural. Entonces podemos ver la siguiente observación.

Observación 2.6 Sean n ∈ N y n = pn1
1 · · · pnm

m , su representación canónica,
entonces veamos los siguiente.

i) δ(n) =
∑
d|n

(f(d) = 1)

ii) δ(n) = (n1 + 1) · · · (nm + 1)
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Ahora, que se ha introducido la función divisor, podemos establecer una
definición más.

Definición 2.7 Sea r ∈ Z definimos a la función aritmética δr como,

δr(n) =
∑

r−1
d|n

1.

Observación 2.8 ∀r ∈ Z se tiene que,

i) δr+1(n) =
∑
d|n

δr(d).

ii)
∑

r
d|n

1 =

n1+1∑
r

k1=1

1 · · ·
nm+1∑

r
km=1

1.

Por otra parte, demostremos el siguiente resultado.

Teorema 2.9 Sean f1, f2, g1, g2 ∈ A(N) tale que,

g1(n) =
∑
d|n

f1(d) y g2(n) =
∑
d|n

f2(d).

Entonce se tiene que,∑
d|n

f1(d)g2(
n

d
) =

∑
d|n

f2(d)g1(
n

d
).

Demostración. Es inmediato, solo hay que utilizar la Observación 1.2 y la
Definición 2.1∑

d|n

f1(d)g2(
n

d
) =

∑
n=d1d2

f1(d1)g2(d2)

=
∑

n=d1d2

f1(d1)
∑

d2=p1p2

f2(p1)

=
∑

n=d1p1p2

f1(d1)f2(p1)

=
∑

n=d1p1p2

f1(p1)f2(d1)

=
∑

n=d1p1p2

f2(d1)f1(p1)

=
∑

n=d1d2

f2(d1)
∑

d2=p1p2

f1(p1)

=
∑

n=d1d2

f2(d1)g1(d2)

=
∑
d|n

f2(d)g1(
n

d
).

■
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Por otro lado, del teorema anterior se demuestra fácil el siguiente resultado.

Teorema 2.10 Sean f ∈ A(N), r ∈ Z. Demostrar que∑
r

d|n

f(n) =
∑
d|n

δr(d)f(n/d)

Demostración. Se prueba utilizado inducción, basta con recordar que ∀r se tiene
que,

δr+1(n) =
∑
d|n

δr(d).

y suponiendo que, g(n) =
∑
d|n

f(d). Entonces, utilizando el Teorema 2.9 se

sigue que, ∑
d|n

f(d)δr+1(
n

d
) =

∑
d|n

g(d)δr(
n

d
)

Y aplicando la hipótesis de inducción,∑
r

d|n

g(d) =
∑
d|n

g(d)δr(
n

d
).

Por lo tanto, ∑
r+1

d|n

f(d) =
∑
d|n

f(d)δr+1(
n

d
).

■

Con este último resultado se expone la linealidad en la iteración del operador∑
d|n

[ ] sobre las funciones aritméticas, fundamentada solo con las propiedades

aritméticas de los números naturales. Para finalizar este apartado solo daremos
una extensión compleja de la función aritméticas δr(n) y la correspondiente
extensión compleja del concepto de iterada de orden complejo.

Definición 2.11 Sean ∀z ∈ C, n ∈ N y n = pn1
1 · · · pnm

m . la factorización
canónica de n, se define la función aritmética δz(n) como,

δz(n) = θz(n1 + 1) · · · θz(nm + 1)

Donde,

θz(ni) =

n1∑
z

ki=1

[
1

k

]
=


zni−1

(ni−1)! , z ̸= 0 ,

[
1

ni

]
z = 0.
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Definición 2.12 Sean f ∈ A(N) y z ∈ C. Diremos que la función iterada de

grado z de la función f sobre el operador
∑
d|n

[ ] es una función aritmética h tal

que,

h(n) =
∑
d|n

δz(d)f(n/d)

y la denotaremos como

h(n) =
∑

z
d|n

f(d).

3. Ejemplos de iteradas sobre el operador
∑
d|n

[ ]

Para esta sección se utilizará lo visto en Iteraciones sobre el operador Σ
respecto a una matiz, propiedades y algunos ejemplos. Por lo tanto, se entenderá
que se esta familiarizado con los conceptos y la notación.

Problema 3.1 Demostrar ∀z ∈ C que,

∑
z

d|n

Λ(d) =


−δz(n)

z log(n), z ̸= 0 ,

Λ(n) z = 0.

Problema 3.2 Sean z ∈ C \ {0}, n,m ∈ N y n = pn1
1 · · · pnt

t la descomposición
canónica de n. Demostrar que,

∑
m

d|n

dz =

(
pz1

pz1 − 1

)m

pzn1
1 −

m∑
n1+1

r=1

(
1

pz1

)(
pz1

pz1 − 1

)r
 · · ·

(
pzt

pzt − 1

)m

pznt
t −

m∑
nt+1

r=1

(
1

pzt

)(
pzt

pzt − 1

)r


Problema 3.3 Sean n ∈ N y n = pn1
1 · · · pnm

m la descomposición canónica de n.
Demostrar que,∑

d|n

δ 1
2
(d) =

(2n1 + 1)

4n1

(
2n1

n1

)
· · · (2nm + 1)

4nm

(
2nm

nm

)
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Problema 3.4 Sean z, w ∈ C y f ∈ A(N) Demostrar que,

i) ∑
w

d|n

δz(d) = δw+z(n)

ii) ∑
w

d|n

∑
z

d1|d

f(d1) =
∑

z
d|n

∑
w

d1|d

f(d1)

Problema 3.5 Sean p ∈ Z, f, g ∈ A(N) y D = [D(n,m)]n,m∈N ∈ TINxN(C) tal
que,

D(n,m) =


1, m | n ,

0 m ∤ n.

Demostrar que,

i)

Dp(n,m) =


δp(

n
m ), m | n ,

0 m ∤ n.

ii)
n∑

[p,D]
k=1

f(k) =
∑

p
d|n

f(d)

iii) f(n) ∗D g(n) = f(n) ⋆ g(n)

Problema 3.6 Sean z, w ∈ C, x ∈ R, p ∈ Z, t ∈ N, y f ∈ A(N) y definamos lo
siguiente,

a) υw(x, n) = nxδw(n).

b) φ≺t≻
x (n) = φx(n) ⋆ · · · ⋆ φx(n)︸ ︷︷ ︸

t−veces

donde,

φx(n) =
∑

−1
d|n

dx

b1) φ≺−t≻
x (n) = hφx

(n) ⋆ · · · ⋆ hφx
(n)︸ ︷︷ ︸

t−veces

donde,

φx(n) ⋆ hφx
(n) =

[
1

n

]
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c) σ≺t≻
x (n) = σx(n) ⋆ · · · ⋆ σx(n)︸ ︷︷ ︸

t−veces

donde,

σx(n) =
∑
d|n

dx

c1) σ≺−t≻
x (n) = hσx(n) ⋆ · · · ⋆ hσx(n)︸ ︷︷ ︸

t−veces

donde,

σx(n) ⋆ hσx(n) =

[
1

n

]
d) E = [E(n,m)]n,m∈N tal que,

E(n,m) =


mx, m | n ,

0 m ∤ n.

Desmostar que,

i) υw(x, n) ⋆ υz(x, n) = υw+z(x, n)

ii) υw(x, n) ⋆ f(n) = nx
∑

w
d|n

f(n)

dx

iii) υ≺p≻
w (x, n) = υpw(x, n)

iv) φx(v) ⋆ σx(n) = υ2(x, n)

iv) φ≺2p≻
x (n) =

∑
−p

d|n

υ2p(x, d)

v)

E−1(n,m) =


δ1(

n
m )

nx, m | n ,

0 m ∤ n.

vi)

n∑
E

k=1

f(k) = g(n) ⇔ f(n) =
∑

−1
d|n

g(d)

nx

Es claro que los ejemplos presentados han sido ampliamente estudiados por
diversos autores, lo único que se realizo de forma independiente es mostrar como
pueden ser desarrollados con nuestra notación iterativa. El objetivo principal

fue introducir el concepto de iterada sobre el operador
∑
d|n

[ ] ya que servirá

como un punto de comparación con el operador

n∑
k=1

[ ], para mostrar la idea

general de suma sobre conjuntos arbitrarios de números naturales, definiendo
operadores aditivos que cumplirán las propiedad lineal en la iteración sobre
funciones aritméticas.
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[9] Ŕıbnikov, Konstantin. Análisis combinatorio. Mir, 1988.
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