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Resumen

El principal objetivo es deducir las expresiones generales de X1 /2
para cualquier funcién aritmética f, por medio de la relacién que
existente entre 31/2-Transformacién y ¥4 ,2, todo desde el punto de
vista iterativo. De igual forma se revisa de forma breve la idea de
operador aditivo tomando como referencias Y.

1. Iteraciones del operado X sobre funciones aritméti-
cas

De forma usual se denota al conjunto de las funciones aritméticas como
A(N)={f| f:N—= C}. Recordemos las siguientes definiciones.

Definicién 1.1 Sea f € A(N) y m € N. La funcidn iterada de grado m de la
funcion f, respecto al operador Suma es la funcion aritmética h tal que,

n ki km—1

km—2

ki1=1ko=1 km—1=1kmn=1

y se denotard como,

>, fk)

n
k=1

FEsto es,
n kl km,— 1

n km—2
DoSE =D > Y flkm):

k=1 1=1k2=1 km—1=1kn=1
Observacion 1.2 Para cualquier funcion aritmética f, se define a la misma
funcion f como su funcion iterada de grado 0 y esto se denota como
n
S° (k) = ().

k=1
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Andlogamente se tiene la siguiente definicién.

Definicién 1.3 Sea f € A(N) y m € N. La funcidn iterada reciproca de grado
m respecto al operador Suma de la funcion f, es una funcion aritmética h tal

que,
km—1

=33 S bk

ki=lko=1  km_1=1kn=1

y se denota como,

n
> fk)

—m
k=1
Definicién 1.4 Sean n € N, m € Z. Entonces se define la siguiente funcion
como,

Por lo tanto, de las definiciones anteriores se puede demostrar que Vn € N

m+k— 2 >0
k—l b m b

Om(n) =4[] m =0,
(—1)nt (n_Z) . m<o0.

Y con ellos se obtiene el seguiente resultado,

Teorema 1.5 Para cualquier funcion aritmética f se tiene que

ST fk) =D Om(n+1—k)f(k) VneN,VYmeZ
k=1 k=1
La demostracion es bdsica por induccion.

Esto es la referencia bésica de la linealidad en la iteracién del operador X, salvo la
notacién empleada, lo demds se puede revisar en las referencias de forma completa en
términos de Operador de diferencias A y antidiferencias finitas 57 haciendo referencias
a los operadores continuos de integraciéon y derivacién, las propiedades que se obtie-
nen usando esta analogia son muy sorprendentes, pero para el caso discreto se puede
adoptar una forma unificada de obtener los resultados, dejando todo en funcién de un
solo operador como lo presentamos aqui, todo se hace en relacién con el operador X
porque tanto el operador A y 1/ involucran una suma aplicada a funciones aritméticas.
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2. Definicién de X,

Primero, recordemos que las generalizaciones de los factoriales complejos son las
siguientes,

w2 =z2(z—-1)...(z—n+1)

w 2" =z(z+1)..(2+n—1)
Y cumple la siguiente relacién,

- = (1) (2
Por lo tanto, los factoriales pueden ser descritos en términos de la funcién Gamma,

n I'(z4+n
n 2= % R(z) >0

. 2= (_1)n (1712)W

Asi, usando las propiedades anteriores podemos extender la funcién 60, (n) para caso
complejo.

Definicién 2.1 Para cualquier z € C y Vn € N definimos la funcidn 0.(n) como;
(™"
— Vv 0
0.n) = i 270
[, 2=0.
Por lo tanto, se tiene lo siguiente.

Definicién 2.2 Sea f € A(N) y z € C. Diremos que la funcidn iterada de grado z de
la funcidn f, es una funciéon aritmética g tal que

g(n) = 0.(n+1-k)f(k)

k=1

y la denotaremos como

3

f(k).

z

k=1
Es claro que esta definicién extiende a las Definicién [I.1]y Definicién [I.3]porque
al considerar valores enteros, coincide con las iteraciones respecto del operador I,
evidentemente la iterada de grado negativo con esta extension es la iterada reciproca
de la Definicién mostrar la distincién en ambos casos es sencillo, ya que en la
Definicién se define un operador aditivo X, el cual se obtiene como resultado
de aplicar la suma de una funcién aritmética f sobre el operador ¥ respecto de una
funcién fija 0.(n). Andlogamente, se pueden definir iteraciones sobre el operador ¥,
para cualquier funcién aritmética f. Sin embrago, hacer esto es solo un caso particular
pero que merece la pena ser mencionado por las propiedades que tienen los factoriales
complejos. A continuacién mostraremos la idea de iteraciones respecto a cualquier

funcién aritmética g fija sobre el operador ¥ lo cual define un operador aditivo ¥,.

Definicién 2.3 Sean f € A(N) y m € N. Diremos que la funcién iterada de grado m
de f respecto de la funcion aritmética g es una funcion aritmética h tal que,

n k1 km—2 km—1

)= gn—ki+1) S glks =k +1) -+ > glkma — ks +1) S glhm1 = ko + 1) (k)

kp=1 ko=1 kpp_1=1 km=1
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y la denotaremos como,

Definicién 2.4 Sea f € A(N). Diremos que f es su funcidn iterada de grado 0 respecto
de g y denotaremos esto como,

n

Z[O,gw(n)] f(k) = f(n).

Definicién 2.5 Sean f,g € A(N) con ¢(1)#0 y m € N . Diremos que la funcién
iterada reciproca de grado m f respecto de la funcion g es una funcion aritmética h tal
que,

n k1 k'm72 k'mfl
f) = gn—ki+1) > gki—ka+1)--+ > glkmo—km-1+1) > glkm-1 = km + 1)h(km)
k1=1 ko=1 km—1=1 km=1

y la denotaremos como,

Z[—m,gm)] F(k).
k=1

Observacién 2.6 Es claro que sin la restriccion g(1)#£0 se tiene una definicion ab-
surda y la respuesta es simple, si g(1)=0 y f(1)#0, entonces no es posible hallar una
funcidn h tal que, f(1)=g(1) h(1). Con esto podemos ver que la existencia de

n

k
Z[fm,g(n)] k)

k=1
depende de la naturaleza de la funcion g y es independiente de la funcion aritmética f

sobre la cual se trabaja.

Definicién 2.7 Seann € N, m € Z y g € Ao(N). Entonces definimos la siguiente

funcion
n 1
. g(n = k|
fm,g(n)] (1) Z[m,gm)} M

k=1
Teorema 2.8 Sean g, f € A(N) tal que g(1)#£0, entonces tenemos que,

g{m’g(n)] flk) = kzzl Otm,gny (K)f(n—k+1) VneENVmeZ
La demostracion se realiza por induccion y usando convolucion de Cauchy, opta-
remos por omitirla ya que lo unico que se hace es considerar las potencias sobre el
producto de Cauchy de la funcidn g las cuales definen a la funcién 0y, g(ny (1).

Como ya se habia mencionado, en el resultado anterior se muestra la linealidad en la
iteracién sobre un operador aditivo ¥4. Este tipo de operadores aditivos se extienden
de forma general sobre matrices infinitas, lo cual permite entender la linealidad en
las iteraciones sobre operadores aditivos, porque estdn estrechamente ligadas con las
potencias de las matrices. Ahora, ya podemos revisar el objetivo principal, estudiar la
relacién entre el operador X, para el caso cuando z = 1/2 y la 1/2-Transformacién.
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3. +£1/2-Transformacién y X

Recordemos que los nimeros de Cataldn esta definidos como,

Cns1 =) CiCn-r, Co=1
k=0
Y su expresién general esta dada por,

C — 1 (Qn)
n+1\n

Ahora, considerando su funcién generatriz,

C(z) = i Cnz".
n=0

@ Lo

Usando lo anterior, convolucién y su definicién se tiene que, C? (z) —
z

z
1++v1—-4z

Por lo tanto, obteniendo las raices se tiene que, C(z) = 2
z

Por otro lado, recordando que
o [1/2
viti=y (1)
n=0

Entonces, tomando y = —4z, manipulando y comparando coeficientes esto da lugar a
las definicién de la 1/2 - Transfomacién.

(%) — Trasformacion:
1/2 (=)t /on
— A 1
( n ) 22r(2n—1) \ n (1a)
Y con argumentos analogos se obtiene,
—1/2\ (=D (2n
= . 2
( n ) 22n n (22)

Por otra parte, pongamos atencién el la siguiente propiedad de la funcién gamma,

(— %) — Trasformacion:

—~

2n)!
4mn!

D(n+1/2) = I(1/2) (3a)

1
Ahora, por la Definicién sabemos que para z = 3y usando la funcién gamma

tenemos una expresién para la funcién aritmética 6y 2(n),

(1/2" ' T(n+1/2—-1) TD(n—1/2)

01/2(n) = (m—1)!  T(1/2)(n)  T(1/2)I(n)

Entonces usando (la) y (3a) se tiene que,

el/g(n)zzzn(jﬁfﬂ Vn €N (4a)
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Por otra parte, para obtener 6_;,2(n) usemos iteraciones y la expresion (4a).
Notemos que por la Definicién se sigue que,

n

Z ;1_20 1/2 ) = b1/2(n).

k=1

M

Aplicando ¥ _; se tiene que,

SID SUEED DD SUMAIEED SR

ki=1  po=1 ki=1 ko=1 k=1

no

Entonces,

N[=

Z_l_ Z 1+1 ~1/2(k) = 2_191/2(79)-
k=1

k=1 k=1

Por lo tanto,

3

Z o 0-1/2(F) => L O1/2(k)

o1 k=1 k=1
Y por la Observacién se sigue que,

—1/2(n Z O1/2(k
Usando la Definicién tenemos que,
2_161/2 Zg 01/2 7’L+17k)
k=1

Y por la Definicién [1.4]

6_1(n) = (1) ( 1 ) .

n—1

Mw

Asi, tenemos que,

27191/2(@ = > 0-1(k)frjp(n+1—k)
k=1 k=1
= D (D! (k i 1) Or2(n+1—Fk)

= 0i2(n) = 01/2(n—1)
- T () F G50 (n1)
B 22<”*1)2((2T2n_—1)1) —-1) (z(znn— 1)) (2:)

#on 1 ()
= wn () (5
w1 ()
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Por lo tanto, ya se obtuvo el valor para 6_;,2(n),

_ (_1/2)m o 2n 2n
012l = 0T = B - 3 - 2n) ( n ) el (5a)

Por otra parte, es inmediato notar que,
91/2 (’I’L) = (3 - 27’L)071/2 (’I’L) (6&)

4. Algunas identidades de X, y Y

Primero consideremos una funcién aritmética f, entonces tenemos que,

>, fk) S 015 (k) f(n+1— k)
k:12 k=1

= 2k 2k
= ;72%(21{:_1) <k>f(n+1—k) por )

Anélogamente,

>, W
k=1

> 0 1p(k)f(n+1—k)
k=1

i 2k 2k
kZ:l 22k(2k — 1)(3 — 2k) ( k ) Jlnt =) por )

Usando ) se tiene que,

n n

S fk) = (3—2k)0_1/2(k)f(n+1—k)
k1’ k=1

Ahora, usando f(n) = 6.(n) se tiene que,

3

n

0-(k) = Y (3—2k)0_1/2(k)0-(n+1—k).

1
2 k=1
Entonces,
0..1(n)=30,_1(n) -2 ; kO 1 /2(k)0=(n + 1 — k).
Por lo tanto,
f: k0 1 mk) = (2) o )= (L) 6. (n)
e 2/ F72 9 ) TEtz VY
k=1
Como se puede advertir con las identidades anteriores, la propiedad lineal que existe

en la iteracién de operadores aditivos sobre funciones aritméticas, es una herramienta
muy Uutil que merece ser estudiada a detalle desde un punto de vista elemental.
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5. Ejemplo numérico

Problema 5.1 Hallar el valor de

Do,
2
k=1
Solucion.
Método 11
200 +2r\ (T4
27: oo 23:(_1)3—*2(7)7~15(3,r) T4r r
1 — (2r +1)47 (2r>
k=1 =
,
14 + 2r T+
B 23:(—1)3—*14r!5(3,r) 747 r
= (2r 4+ 1)47 2r
T
16 (8 18\ (9 20 /10
_(—1)’145(3,1) \ 8 1 +(—1)1285(3,2) 9 2 +(—1)084S(3,3) 10 3
- 3%47 2 5% 47 4 747 6
1 2 3
_ M16Y (4 81T 841719
T4\ 8)\3 5 35
14+ 12870 (4 8%17 8x17%19
_ 2 = 527,4521484
i <3 =+ > 527,4521484375
Método 2

SE = > 0p®)T+1-k)°

1
2 k=1

= > Oipa(k)(8—k)°

7

- T ()6

k=1

B 2 2\ 3 4[4\ ;5 6 6\ .3 8 8\ 3

N 22*1(1>7+24*3(2)6+26*5<3)5+28*7(4>4
10 10\ .3 12 12\ .3 14 14\ 3
+210*9(5)3+212*11(6)2++214*13(7)1

6%  3x5° 35%3% 63 7x33

3
= 7+?+ 93 + 20 + o7 +¥+ 910

= 527,4521484375
|

ISolo hay que usar los valores de los nimeros de Stirling de segunda especie; S(3,1) =
1, S(3,2) =3yS(3,3) = 1.
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