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Resumen

El principal objetivo es deducir las expresiones generales de Σ±1/2

para cualquier función aritmética f, por medio de la relación que
existente entre ±1/2-Transformación y Σ±1/2, todo desde el punto de
vista iterativo. De igual forma se revisa de forma breve la idea de

operador aditivo tomando como referencias Σz.

1. Iteraciones del operado Σ sobre funciones aritméti-
cas

De forma usual se denota al conjunto de las funciones aritméticas como
A(N) = {f | f : N → C} . Recordemos las siguientes definiciones.

Definición 1.1 Sea f ∈ A(N) y m ∈ N. La función iterada de grado m de la
función f, respecto al operador Suma es la función aritmética h tal que,

h(n) =

n∑
k1=1

k1∑
k2=1

· · ·
km−2∑

km−1=1

km−1∑
km=1

f(km)

y se denotará como,
n∑

m
k=1

f(k).

Esto es,
n∑

m
k=1

f(k) =

n∑
k1=1

k1∑
k2=1

· · ·
km−2∑

km−1=1

km−1∑
km=1

f(km).

Observación 1.2 Para cualquier función aritmética f, se define a la misma
función f como su función iterada de grado 0 y esto se denota como

n∑
0

k=1

f(k) = f(n).
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Análogamente se tiene la siguiente definición.

Definición 1.3 Sea f ∈ A(N) y m ∈ N. La función iterada rećıproca de grado
m respecto al operador Suma de la función f, es una función aritmética h tal
que,

f(n) =

n∑
k1=1

k1∑
k2=1

· · ·
km−2∑

km−1=1

km−1∑
km=1

h(km)

y se denota como,
n∑

−m
k=1

f(k).

Definición 1.4 Sean n ∈ N, m ∈ Z. Entonces se define la siguiente función
como,

θm(n) =

n∑
m

k=1

[
1

k

]
.

Por lo tanto, de las definiciones anteriores se puede demostrar que ∀n ∈ N

θm(n) =



(
m+ k − 2

k − 1

)
, m > 0,[

1
n

]
, m = 0,

(−1)n−1

(
−m

n− 1

)
, m < 0.

Y con ellos se obtiene el seguiente resultado,

Teorema 1.5 Para cualquier función aritmética f se tiene que

n∑
m

k=1

f(k) =

n∑
k=1

θm(n+ 1− k)f(k) ∀n ∈ N,∀m ∈ Z

La demostración es básica por inducción.

Esto es la referencia básica de la linealidad en la iteración del operador Σ, salvo la
notación empleada, lo demás se puede revisar en las referencias de forma completa en
términos de Operador de diferencias ∆ y antidiferencias finitas ▽ haciendo referencias
a los operadores continuos de integración y derivación, las propiedades que se obtie-
nen usando esta analoǵıa son muy sorprendentes, pero para el caso discreto se puede
adoptar una forma unificada de obtener los resultados, dejando todo en función de un
solo operador como lo presentamos aqúı, todo se hace en relación con el operador Σ
porque tanto el operador ∆ y ▽ involucran una suma aplicada a funciones aritméticas.

https://mathsingular.com.mx 2

https://mathsingular.com.mx


Este trabajo tiene licencia CC BY-SA 4.0

2. Definición de Σz

Primero, recordemos que las generalizaciones de los factoriales complejos son las
siguientes,

zn = z(z − 1)...(z − n+ 1)

zn = z(z + 1)...(z + n− 1)

Y cumple la siguiente relación,

zn = (−1)n(−z)n

Por lo tanto, los factoriales pueden ser descritos en términos de la función Gamma,

zn = Γ(z+n)
Γ(z)

ℜ(z) > 0

z−n = (−1)n 1
(1−z)n

Aśı, usando las propiedades anteriores podemos extender la función θm(n) para caso
complejo.

Definición 2.1 Para cualquier z ∈ C y ∀n ∈ N definimos la función θz(n) como;

θz(n) =


(z)n−1

(n− 1)!
, ∀z ̸= 0 ,[

1
n

]
, z = 0.

Por lo tanto, se tiene lo siguiente.

Definición 2.2 Sea f ∈ A(N) y z ∈ C. Diremos que la función iterada de grado z de
la función f, es una función aritmética g tal que

g(n) =

n∑
k=1

θz(n+ 1− k)f(k)

y la denotaremos como
n∑

z
k=1

f(k).

Es claro que esta definición extiende a lasDefinición 1.1 y Definición 1.3 porque
al considerar valores enteros, coincide con las iteraciones respecto del operador Σ,
evidentemente la iterada de grado negativo con esta extensión es la iterada reciproca
de la Definición 1.3, mostrar la distinción en ambos casos es sencillo, ya que en la
Definición 2.2 se define un operador aditivo Σz el cual se obtiene como resultado
de aplicar la suma de una función aritmética f sobre el operador Σ respecto de una
función fija θz(n). Análogamente, se pueden definir iteraciones sobre el operador Σz

para cualquier función aritmética f. Sin embrago, hacer esto es solo un caso particular
pero que merece la pena ser mencionado por las propiedades que tienen los factoriales
complejos. A continuación mostraremos la idea de iteraciones respecto a cualquier
función aritmética g fija sobre el operador Σ lo cual define un operador aditivo Σg.

Definición 2.3 Sean f ∈ A(N) y m ∈ N. Diremos que la función iterada de grado m
de f respecto de la función aritmética g es una función aritmética h tal que,

h(n) =

n∑
k1=1

g(n− k1 + 1)

k1∑
k2=1

g(k1 − k2 + 1) · · ·
km−2∑

km−1=1

g(km−2 − km−1 + 1)

km−1∑
km=1

g(km−1 − km + 1)f(km)
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y la denotaremos como,
n∑

[m,g(n)]
k=1

f(k).

Definición 2.4 Sea f ∈ A(N). Diremos que f es su función iterada de grado 0 respecto
de g y denotaremos esto como,

n∑
[0,g(n)]

k=1

f(k) = f(n).

Definición 2.5 Sean f, g ∈ A(N) con g(1)̸=0 y m ∈ N . Diremos que la función
iterada reciproca de grado m f respecto de la función g es una función aritmética h tal
que,

f(n) =

n∑
k1=1

g(n− k1 + 1)

k1∑
k2=1

g(k1 − k2 + 1) · · ·
km−2∑

km−1=1

g(km−2 − km−1 + 1)

km−1∑
km=1

g(km−1 − km + 1)h(km)

y la denotaremos como,
n∑

[−m,g(n)]
k=1

f(k).

Observación 2.6 Es claro que sin la restricción g(1)̸=0 se tiene una definición ab-
surda y la respuesta es simple, si g(1)=0 y f(1)̸=0, entonces no es posible hallar una
función h tal que, f(1)=g(1) h(1). Con esto podemos ver que la existencia de

n∑
[−m,g(n)]

k=1

f(k)

depende de la naturaleza de la función g y es independiente de la función aritmética f
sobre la cual se trabaja.

Definición 2.7 Sean n ∈ N, m ∈ Z y g ∈ A0(N). Entonces definimos la siguiente
función

θ[m,g(n)] (n) =

n∑
[m,g(n)]

k=1

[
1

k

]
.

Teorema 2.8 Sean g, f ∈ A(N) tal que g(1)̸=0, entonces tenemos que,

n∑
[m,g(n)]

k=1

f(k) =

n∑
k=1

θ[m,g(n)] (k)f(n− k + 1) ∀n ∈ N, ∀m ∈ Z

La demostración se realiza por inducción y usando convolución de Cauchy, opta-
remos por omitirla ya que lo único que se hace es considerar las potencias sobre el
producto de Cauchy de la función g las cuales definen a la función θ[m,g(n)] (n).

Como ya se hab́ıa mencionado, en el resultado anterior se muestra la linealidad en la
iteración sobre un operador aditivo Σg. Este tipo de operadores aditivos se extienden
de forma general sobre matrices infinitas, lo cual permite entender la linealidad en
las iteraciones sobre operadores aditivos, porque están estrechamente ligadas con las
potencias de las matrices. Ahora, ya podemos revisar el objetivo principal, estudiar la
relación entre el operador Σz para el caso cuando z = 1/2 y la 1/2-Transformación.
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3. ±1/2-Transformación y Σ±1/2

Recordemos que los números de Catalán esta definidos como,

Cn+1 =

n∑
k=0

CkCn−k, C0 = 1.

Y su expresión general esta dada por,

Cn =
1

n+ 1

(
2n

n

)
Ahora, considerando su función generatriz,

C(z) =

∞∑
n=0

Cnz
n.

Usando lo anterior, convolución y su definición se tiene que, C2(z)− C(z)

z
+

1

z
= 0.

Por lo tanto, obteniendo las ráıces se tiene que, C(z) =
1±

√
1− 4z

2z
.

Por otro lado, recordando que√
1 + y =

∞∑
n=0

(
1/2

n

)
yn.

Entonces, tomando y = −4z, manipulando y comparando coeficientes esto da lugar a
las definición de la 1/2 - Transfomación.(

1
2

)
− Trasformación: (

1/2

n

)
=

(−1)n+1

22n(2n− 1)

(
2n

n

)
(1a)

Y con argumentos análogos se obtiene,(
− 1

2

)
− Trasformación: (

−1/2

n

)
=

(−1)n

22n

(
2n

n

)
. (2a)

Por otra parte, pongamos atención el la siguiente propiedad de la función gamma,

Γ(n+ 1/2) =
(2n)!

4nn!
Γ(1/2) (3a)

Ahora, por la Definición 2.1 sabemos que para z =
1

2
y usando la función gamma

tenemos una expresión para la función aritmética θ1/2(n),

θ1/2(n) =
(1/2)n−1

(n− 1)!
=

Γ(n+ 1/2− 1)

Γ(1/2)Γ(n)
=

Γ(n− 1/2)

Γ(1/2)Γ(n)

Entonces usando (1a) y (3a) se tiene que,

θ1/2(n) =
2n

22n(2n− 1)

(
2n

n

)
∀n ∈ N (4a)
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Por otra parte, para obtener θ−1/2(n) usemos iteraciones y la expresión (4a).
Notemos que por la Definición 2.1 se sigue que,

n∑
− 1

2
k=1

1 =

n∑
k=1

θ−1/2(k) = θ1/2(n).

Aplicando Σ−1 se tiene que,

n∑
−1

k1=1

k1∑
− 1

2
k2=1

1 =

n∑
−1

k1=1

k1∑
k2=1

θ−1/2(k2) =

n∑
−1

k=1

θ1/2(k).

Entonces,
n∑

−1− 1
2

k=1

1 =

n∑
−1+1

k=1

θ−1/2(k) =

n∑
−1

k=1

θ1/2(k).

Por lo tanto,
n∑

− 3
2

k=1

1 =

n∑
0

k=1

θ−1/2(k) =

n∑
−1

k=1

θ1/2(k).

Y por la Observación 1.2 se sigue que,

θ−1/2(n) =

n∑
−1

k=1

θ1/2(k).

Usando la Definición 1.3 tenemos que,

n∑
−1

k=1

θ1/2(k) =

n∑
k=1

θ−1(k)θ1/2(n+ 1− k).

Y por la Definición 1.4,

θ−1(n) = (−1)n−1

(
1

n− 1

)
.

Aśı, tenemos que,

n∑
−1

k=1

θ1/2(k) =

n∑
k=1

θ−1(k)θ1/2(n+ 1− k)

=

n∑
k=1

(−1)k−1

(
1

k − 1

)
θ1/2(n+ 1− k)

= θ1/2(n)− θ1/2(n− 1)

=
2n

22n(2n− 1)

(
2n

n

)
− 2(n− 1)

22(n−1)(2(n− 1)− 1)

(
2(n− 1)

n− 1

)
=

2n

22n(2n− 1)

(
2n

n

)
− 2(n− 1)

22(n−1)(2(n− 1)− 1)

(
n

2(2n− 1)

)(
2n

n

)
=

2n

22n(2n− 1)

(
2n

n

)(
1− 2n− 2

2n− 3

)
=

2n

22n(2n− 1)

(
2n

n

)(
−1

2n− 3

)
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Por lo tanto, ya se obtuvo el valor para θ−1/2(n),

θ−1/2(n) =
(−1/2)n−1

(n− 1)!
=

2n

22n(2n− 1)(3− 2n)

(
2n

n

)
∀n ∈ N. (5a)

Por otra parte, es inmediato notar que,

θ1/2(n) = (3− 2n)θ−1/2(n). (6a)

4. Algunas identidades de Σz y Σ±1/2

Primero consideremos una función aritmética f, entonces tenemos que,

n∑
1
2

k=1

f(k) =

n∑
k=1

θ1/2(k)f(n+ 1− k)

=

n∑
k=1

2k

22k(2k − 1)

(
2k

k

)
f(n+ 1− k) por (4a)

Análogamente,

n∑
− 1

2
k=1

f(k) =

n∑
k=1

θ−1/2(k)f(n+ 1− k)

=

n∑
k=1

2k

22k(2k − 1)(3− 2k)

(
2k

k

)
f(n+ 1− k) por (5a)

Usando (6a) se tiene que,

n∑
1
2

k=1

f(k) =

n∑
k=1

(3− 2k) θ−1/2(k)f(n+ 1− k)

Ahora, usando f(n) = θz(n) se tiene que,

n∑
1
2

k=1

θz(k) =

n∑
k=1

(3− 2k) θ−1/2(k)θz(n+ 1− k).

Entonces,

θz+ 1
2
(n) = 3θz− 1

2
(n)− 2

n∑
k=1

kθ−1/2(k)θz(n+ 1− k).

Por lo tanto,

n∑
z

k=1

kθ−1/2(k) =

(
3

2

)
θz− 1

2
(n)−

(
1

2

)
θz+ 1

2
(n).

Como se puede advertir con las identidades anteriores, la propiedad lineal que existe
en la iteración de operadores aditivos sobre funciones aritméticas, es una herramienta
muy útil que merece ser estudiada a detalle desde un punto de vista elemental.

https://mathsingular.com.mx 7

https://mathsingular.com.mx


Este trabajo tiene licencia CC BY-SA 4.0

5. Ejemplo numérico

Problema 5.1 Hallar el valor de

7∑
1
2

k=1

k3.

Solución.
Método 11

7∑
1
2

k=1

k3 =

3∑
r=1

(−1)3−r2(7)r!S(3, r)

(2r + 1)47

(
2(7) + 2r

7 + r

)(
7 + r

r

)
(
2r

r

)

=

3∑
r=1

(−1)3−r14r!S(3, r)

(2r + 1)47

(
14 + 2r

7 + r

)(
7 + r

r

)
(
2r

r

)

=
(−1)214S(3, 1)

3 ∗ 47

(
16

8

)(
8

1

)
(
2

1

) +
(−1)128S(3, 2)

5 ∗ 47

(
18

9

)(
9

2

)
(
4

2

) +
(−1)084S(3, 3)

7 ∗ 47

(
20

10

)(
10

3

)
(
6

3

)
=

14

47

(
16

8

)(
4

3
− 8 ∗ 17

5
+

8 ∗ 17 ∗ 19
35

)
=

14 ∗ 12870
47

(
4

3
− 8 ∗ 17

5
+

8 ∗ 17 ∗ 19
35

)
= 527,4521484375

Método 2

7∑
1
2

k=1

k3 =

7∑
k=1

θ1/2(k)(7 + 1− k)3

=

7∑
k=1

θ1/2(k)(8− k)3

=

7∑
k=1

2k

22k(2k − 1)

(
2k

k

)
(8− k)3

=
2

22 ∗ 1

(
2

1

)
73 +

4

24 ∗ 3

(
4

2

)
63 +

6

26 ∗ 5

(
6

3

)
53 +

8

28 ∗ 7

(
8

4

)
43

+
10

210 ∗ 9

(
10

5

)
33 +

12

212 ∗ 11

(
12

6

)
23 ++

14

214 ∗ 13

(
14

7

)
13

= 73 +
63

2
+

3 ∗ 53

23
+ 20 +

35 ∗ 33

27
+

63

25
+

7 ∗ 33
210

= 527,4521484375

■

1Solo hay que usar los valores de los números de Stirling de segunda especie; S(3, 1) =
1, S(3, 2) = 3 yS(3, 3) = 1.
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