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Resumen

Las iteraciones respecto a una matriz ha sido ampliamente
desarrolladas con el estudio de coeficientes universales; los números de
Stirling, los coeficientes binomiales, números de Catalán, entre otros
más, la belleza de estos conceptos radica en que la muchas de las
propiedades básicas de las recursiones aditivas sobre funciones

aritméticas están fundamentadas por el álgebra matricial, por lo tanto,
en este texto se estudian de forma simple dicha propiedad general

aplicada a iteraciones de funciones sobre el operador Suma.

1. Introducción

Primero estudiemos las funciones tipo binomiales y algunas de sus propie-
dades. Sea P (1, 1) ∈ C y consideremos una función aritmética f tal que,

P (n,m) =


P (n− 1,m) + f(m)P (n− 1,m− 1) 1 < m ≤ n ,

0 n < m.

Entonces se tiene por su definición que,

P (2, 1) = P (1, 1),

P (2, 2) = f(2)P (1, 1),

P (3, 1) = P (2, 1) = P (1, 1)

P (3, 2) = P (2, 2) + f(2)P (2, 1) = f(2)P (1, 1) + f(2)P (1, 1) = 2f(2)P (1, 1)

P (3, 3) = f(3)P (2, 2) = f(3)f(2)P (1, 1),
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P (4, 1) = P (3, 1) = P (1, 1)

P (4, 2) = P (3, 2) + f(2)P (3, 1) = 2f(2)P (1, 1) + f(2)P (1, 1) = 3f(2)P (1, 1)

P (4, 3) = P (3, 3) + f(3)P (3, 2) = f(3)f(2)P (1, 1) + f(3)2f(2)P (1, 1) = 3f(3)f(2)P (1, 1)

P (4, 4) = f(4)P (3, 3) = f(4)f(3)f(2)P (1, 1),

P (5, 1) = P (4, 1) = P (1, 1)

P (5, 2) = P (4, 2) + f(2)P (4, 1) = 4f(2)P (1, 1)

P (5, 3) = P (4, 3) + f(3)P (4, 2) = 3f(3)f(2)P (1, 1) + f(3)3f(2)P (1, 1) = 6f(3)f(2)P (1, 1)

P (5, 4) = P (4, 4) + f(4)P (4, 3) = 4f(4)f(3)f(2)P (1, 1)

P (5, 5) = f(5)f(4)f(3)f(2)P (1, 1),

P (6, 1) = P (5, 1) = P (1, 1)

P (6, 2) = P (5, 2) + f(2)P (5, 1) = 4f(2)P (1, 1) + f(2)P (1, 1) = 5f(2)P (1, 1)

P (6, 3) = P (5, 3) + f(3)P (5, 2) = 10f(3)f(2)P (1, 1)

P (6, 4) = P (5, 4) + f(4)P (5, 3) = 10f(4)f(3)f(2)P (1, 1)

P (6, 5) = P (5, 5) + f(5)P (5, 4) = 5f(5)f(4)f(3)f(2)P (1, 1)

P (6, 6) = f(6)f(5)f(4)f(3)f(2)P (1, 1),

P (7, 1) = P (6, 1) = P (1, 1)

P (7, 2) = P (6, 2) + f(2)P (6, 1) = 5f(2)P (1, 1) + f(2)P (1, 1) = 6f(2)P (1, 1)

P (7, 3) = P (6, 3) + f(3)P (6, 2) = 15f(3)f(2)P (1, 1)

P (7, 4) = P (6, 4) + f(4)P (6, 3) = 20f(4)f(3)f(2)P (1, 1)

P (7, 5) = P (6, 5) + f(5)P (6, 4) = 15f(5)f(4)f(3)f(2)P (1, 1)

P (7, 6) = P (6, 6) + f(6)P (6, 5) = 6f(6)f(5)f(4)f(3)f(2)P (1, 1)

P (7, 7) = f(7)f(6)f(5)f(4)f(3)f(2)P (1, 1),

De lo anterior se deduce la siguiente forma general,

P (n+ 1;m+ 1) =
( n

m

) m∏
r=1

f(r + 1)P (1, 1)

P (n, 1) = P (1, 1) ∀n,m ∈ N.
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En particular, considerando f(1) = P (1, 1) se tiene que,

P (n,m) =

(
n− 1

m− 1

) m∏
r=1

f(r). (1a)

Y manipulando se obtiene,

P (n,m) =

(
n− 1

m− 1

) m∏
r=1

f(r)

=
(m
n

)( n

m

) m∏
r=1

f(r)

=
(m
n

) m∏
r=1

(
n− r + 1

r

)
f(r).

Por lo tanto,

P (n,m) =
(m
n

) m∏
r=1

(
n− r + 1

r

)
f(r). (2a)

Esta ultima expresión será útil para entender algunas propiedades sobre
sumas que involucran producto de coeficientes tipo binomiales.

2. Representación matricial

Por otra parte, es fácil notar que para cualquier función de dos variables
M(n,m) tiene al menos una expresión matricial asociada, Mnxm descrita como,

Mnxm =
(
M(k, s)

)n,m
k,s=1

=

M(1, 1) · · · M(1,m)
... · · ·

...
M(n, 1) · · · M(n,m)

 .

Por lo tanto, es conveniente definir la matiz asociada a (1a) como un matriz
triangular,

Pnxm =
(
P (k, s)

)n,m
k,r=1

=

((
k − 1

s− 1

)∏s
r=1 f(r)

)n,m

k,s=1

. (3)

Entonces se tiene que,

Pnxm =


f(1) 0 0 ··· 0
f(1) f(1)f(2) 0 ··· 0
f(1) 2f(1)f(2) f(1)f(2)f(3) ··· 0

...
...

...
...

...(
n− 1

0

)
f(1)

(
n− 1

1

)
f(1)f(2)

(
n− 1

2

)
f(1)f(2)f(3) ···

(
n− 1

m− 1

)
f(1)···f(m


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Ahora que se cambio a una representación matricial, lo siguiente es encontrar
la matriz inversa para las versiones cuadradas de (3), para esto es suficiente
revisar algunos valores de la matriz Pnxn. Lo primero es considerar la restricción
f(n) ̸= 0 ∀n ∈ N para que la versión cuadrada de la matriz (3) sea invertible,
una vez eludiendo este hecho veamos lo siguiente.

P1x1 =
(
f(1)

)
⇒ P−1

1x1 =
(
f−1(1)

)

P2x2 =

(
f(1) 0
f(1) f(1)f(2)

)
⇒ P−1

2x2 =

(
f−1(1) 0

−f−1(1)f−1(2) f−1(1)f−1(2)

)

P3x3 =

(
f(1) 0 0
f(1) f(1)f(2) 0
f(1) 2f(1)f(2) f(1)f(2)f(3)

)
⇒ P−1

3x3 =

(
f−1(1) 0 0

−f−1(1)f−1(2) f−1(1)f−1(2) 0

f−1(1)f−1(2)f−1(3) −2f−1(1)f−1(2)f−1(3) f−1(1)f−1(2)f−1(3)

)
De forma recursiva se obtiene que,

P−1
nxn =

(
(−1)k−s

(
k − 1

s− 1

)∏k
r=1 f

−1(r)

)n,n

k,s=1

(4)

Hasta este punto tenemos lo suficiente para introducir como se integran los
conceptos de iteración y la propiedad lineal que está justificada en el álgebra de
matrices, tomando como referencia a las funciones tipo binomiales y su repre-
sentación matricial.

3. Definición de iteradas sobre el operador Σ
respecto a una matriz

Primero recordemos algunos conceptos que cubran el caso general para apli-
carlo en las funciones tipo binomiales.

Observación 3.1

i) A2(N) = {f | f : NxN −→ C}
ii) MNxN(C) = {M = [f(p, q)]q∈N

p∈N : f ∈ A2(N)}
iii) TINxN(C) = {M ∈ MNxN(C) | Mm

n = 0 ∀n < m}
iv) TIINxN(C) = {T ∈ TINxN(C) |Tn

n ̸= 0 ∀n ∈ N}
v) N∗ = N ∪ {0}
vi) A∗(N∗) = {f | f : N∗ −→ C}
vii)

Πaxb : MNxN(C) −→ Maxb(C)
Πaxb(T ) 7−→ Taxb = [T (r, s)]1≤s≤b

1≤r≤a

donde, Πaxa = Πa.
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Ahora tenemos lo necesario para introducir un concepto de operador Suma
respecto una matiz. Nos centraremos solo en las matrices triangulares inferiores
pero la definición pude hacerse para un caso más general.

Definición 3.2 Sean f ∈ A(N) y T ∈ TINxN(C). Diremos la suma de la f
operador Σ respeto de la matriz T es una función aritmética h tal que,

h(n) =

n∑
k=1

T (n, k)f(k)

y lo de notaremos como

h(n) =

n∑
T

k=1

f(k)

Para entender la definición anterior lo que se induce es un operador aditivo
respecto a una matriz T ∈ MNxN(C) sobre las funciones aritméticas, esto es,

ΣT : A(N) → A(N).

Por lo tanto, a partir de aqúı vamos a suponer que se conoce el término de
operador aditivo ΣT .

Definición 3.3 Sean f ∈ A(N), T ∈ TINxN(C) y m ∈ N. Diremos que la fun-
ción iterada de grado m de f respecto del operador ΣT es una función aritmética
h tal que,

h(n) =

n∑
T

k1=1

k1∑
T

k2=1

· · ·
km−2∑

T
km−1=1

km−1∑
T

km=1

f(km)

o de forma explicita,

h(n) =

n∑
k1=1

T (n, k1)

k1∑
k2=1

T (k1, k2) · · ·
km−2∑

km−1=1

T (km−2, km−1)

km−1∑
km=1

T (km−1, km)f(km)

y la denotaremos como
n∑

[m,T ]
k=1

f(k).

Definición 3.4 Sean f ∈ A(N) y T ∈ TINxN(C), entonces diremos que f es su
función iterada de grado 0 respecto del operador ΣT y denotaremos esto como

n∑
[0,T ]

k=1

f(k) = f(n).
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Definición 3.5 Sean f ∈ A(N), T ∈ TIINxN(C) y m ∈ N. Diremos que la
función iterada dual de grado m de f respecto del operador ΣT es una función
aritmética h tal que,

f(n) =

n∑
T

k1=1

k1∑
T

k2=1

· · ·
km−2∑

T
km−1=1

km−1∑
T

km=1

h(km)

o de forma explicita,

f(n) =

n∑
k1=1

T (n, k1)

k1∑
k2=1

T (k1, k2) · · ·
km−2∑

km−1=1

T (km−2, km−1)

km−1∑
km=1

T (km−1, km)h(km)

y la denotaremos como
n∑

[−m,T ]
k=1

f(k).

Como se puede ver en esta definición se ha supuesto que T(n,n)̸=0 y la
respuesta es simple, ya que al asociar la matriz triangular T, se tiene que T es
invertible śı, y sólo śı, sus entradas diagonales son distintas de cero. Aśı, la
existencia de

n∑
[−m,T ]

k=1

f(k)

depende de la matriz T ∈ STNxN(C).

Definición 3.6 Sean p ∈ Z y T ∈ TIINxN(C). Entonces definimos la siguiente
función

ϑT
p (s, t) = [Πp(T )]ts = T p(s, t)

Lo que describe está definición no es más que la entrada M t
s de la matriz T p

que es una potencia entera de T . Por lo tanto, tenemos el siguiente resultado.

Teorema 3.7 Sean ∀n ∈ N, f ∈ A(N), p ∈ Z y T ∈ TIINxN(C). Entonces se
tiene que,

n∑
[p,T ]

k=1

f(k) =

n∑
k=1

ϑT
p (n, k)f(k).

Demostración. Se sigue de la definición de producto matricial y de las definicio-
nes de iteradas sobre el operador ΣT .

i) Para p = 0 es claro porque T 0 = I. Entonces

n∑
k=1

ϑT
0 (n, k)f(k) =

n∑
k=1

δn,kf(k) = f(n).
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Y por la Definición 3.4
n∑

[0,T ]
k=1

f(k) = f(n)

ii) Ahora supongamos que es cierto para alguna p > 0, es decir,

n∑
[p,T ]

k=1

f(k) =

n∑
k=1

ϑT
p (n, k)f(k).

Se satisface, por otra parte recordemos que por el producto de matices

T p(s, t) =

a∑
r=1

T p−1(s, r)T (r, t).

Aśı por la hipótesis de inducción sabemos que,

n∑
[p,T ]

k=1

f(k) =

n∑
k=1

ϑT
p (n, k)f(k).

Ahora aplicando el operador ΣT se tiene que,

n∑
T

k=1

k∑
[p,T ]

k1=1

f(k) =

n∑
T

k=1

k∑
k1=1

ϑT
p (k, k1)f(k1).

Entonces por la Definición 3.3 se tiene que,

n∑
[p+1,T ]

k=1

f(k) =

n∑
T

k=1

k∑
k1=1

ϑT
p (k, k1)f(k1).

Y por otra parte,
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n∑
T

k=1

k∑
k1=1

ϑT
p (k, k1)f(k1) =

n∑
k=1

T (n, k)

k∑
k1=1

ϑT
p (k, k1)f(k1)

=

n∑
k=1

k∑
k1=1

T (n, k)ϑT
p (k, k1)f(k1)

=
∑

k+k1=n+1

T (n, k)ϑT
p (k, k1)f(k1)

=
∑

k+k1=n+1

T (n, k1)ϑ
T
p (k1, k)f(k)

=

n∑
k=1

k∑
k1=1

T (n, k1)ϑ
T
p (k1, k)f(k)

=

n∑
k=1

k∑
k1=1

T (n, k1)T
p(k1, k)f(k)

=

n∑
k=1

(
k∑

k1=1

T (n, k1)T
p(k1, k)

)
f(k)

=

n∑
k=1

T p+1(n, k)f(k)

=

n∑
k=1

ϑT
p+1(n, k)f(k).

Por lo tanto se sigue que,

n∑
[p+1,T ]

k=1

f(k) =

n∑
k=1

ϑT
p+1(n, k)f(k).

iii) Para p < 0 es análogo al caso anterior.
Con lo que se tiene demostrado el resultado.

■
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Por último, solo definamos el producto de Cauchy para el operador ΣT

Definición 3.8 Sean g, f ∈ A(N) y T ∈ TIINxN(C). Diremos que la convolu-
ción de las funciones aritmeticas f y g es una función aritmética h tal que,

h(n) =

n∑
T

k=1

f(k)g(n+ 1− k) =

n∑
k=1

T (n, k)f(k)g(n+ 1− k).

y lo denotaremos como,
h(n) = f(n) ∗T g(n)

Este producto es claramente no abeliano en general. Para finalizar comen-
taremos que la propiedad lineal en la iteración del operado Σ se sustenta en
álgebra de matrices y abarca una gran diversidad de casos, incluso cuando la
suma no se realiza sobre funciones aritméticas.

4. Ejemplos de iteraciones del operado Σ res-
pecto a una matriz

Problema 4.1 Sean n ∈ N y f ∈ A(N) tal que,

P (n,m) =


P (n− 1,m) + f(m)P (n− 1,m− 1) 1 < m ≤ n ,

0 n < m.

Sin pérdida de generalidad, se consideran solo los casos f(1) = P (1, 1) En-
tonces por su definición y de su representación matricial se tiene que,

Pnxm =
(
P (k, s)

)n,m
k,r=1

=

((
k − 1

s− 1

)∏s
r=1 f(r)

)n,m

k,s=1

.

y

P−1
nxn =

(
(−1)k−s

(
k − 1

s− 1

)∏k
r=1 f

−1(r)

)n,n

k,s=1

I) Demostrar que son equivalentes,

i)
n∑

k=1

(
n− 1

k − 1

) k∏
r=1

f(r)h(k) = g(n)

ii)
n∑

k=1

(−1)n−k

(
n− 1

k − 1

) n∏
r=1

f−1(r)g(k) = h(n)
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II) Sean n ∈ N, p ∈ Z y f(n) = 1. Entonces se tiene lo siguiente,

i)

ϑP
p(n,m) =



(
n− 1

m− 1

)
pn−1 p ̸= 0 ,

[
1

n

]
p = 0.

ii) ∀h ∈ A(N)

n∑
[p,P]

k=1

h(k) =


n∑

k=1

(
n− 1

k − 1

)
pk−1h(n+ 1− k) p ̸= 0 ,

h(n) p = 0.

iii) ∀h, g ∈ A(N)
h(n) ∗P g(n) = g(n) ∗P h(n)

iv)

III) Sean a, b, c, d, n,m ∈ N, z1, · · · , za ∈ C, w1, · · ·wb ∈ C q1, · · · , qc ∈ C y
g, h ∈ A(N).

Recordemos lo siguiente,

i)

zmi =


zi(zi + 1)(zi + 2) · · · (zi +m− 1) zi ̸= 0 ,

[
1

m

]
zi = 0.

ii)

w
m
i =


wi(wi − 1)(wi − 2) · · · (wi −m+ 1) wi ̸= 0 ,

[
1

m

]
wi = 0.

iii) [
d

m

]
qi

=


(

1−qdi
1−qi

)(
1−qd−1

i

1−q2i

)
· · ·
(

1−qd−m+1
i

1−qmi

)
qi ̸= 0 ,

1 qi = 0.

Entonces definamos la siguiente función,

f(m) =

a∏
r1=1

b∏
r2=1

c∏
r3=1

(
1− qd−m+1

r3

1− qmi

)
(zr1 +m− 1)(wr2 −m+ 1).
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Demostrar que son equivalente

1)

h(n) =

a∏
r1=1

b∏
r2=1

c∏
r3=1

n∑
k=1

(
n− 1

k − 1

)
zkr1w

k
r2

[
d

k

]
qr3

g(k)

2)
n∑

k=1

(
n− 1

k − 1

)
(−1)n−kh(k) =

a∏
r1=1

b∏
r2=1

c∏
r3=1

znr1w
n
r2

[
d

n

]
qr3

g(n)

Problema 4.2 Sea f, hf (n) ∈ A(N) tal que f(1) ̸= 0. y f(n) ∗ hf (n) =

[
1

n

]
.

Por otra parte, sea

F (n,m) =


f(n−m+ 1) 1 ≤ m ≤ n ,

0 m > n .

Y definamos la matriz infinita,

F = (F (n,m))
∞
n,m=0 .

Por último, ∀p ∈ Z definamos la siguiente función,

f≺p≻(n) =



f(n) ∗ · · · ∗ f(n)︸ ︷︷ ︸
p−veces

p > 0 ,

[
1

n

]
p = 0 ,

hf (n) ∗ · · · ∗ hf (n)︸ ︷︷ ︸
q−veces

p < 0, p = −q .

Entonces se puede demostrar lo siguiente.

i) ∀p ∈ Z se tiene que,

ϑF
p(n,m) = f≺p≻(n+ 1−m)

ii) ∀p ∈ Z, ∀g ∈ A(N) se tiene que,

n∑
[p,F]

k=1

g(k) =

n∑
k=1

f≺p≻(k)g(n+ 1− k)

Es decir,
n∑

[p,F]
k=1

g(k) =

n∑
[p, f(n)]

k=1

g(k)
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iii) ∀p ∈ Z, y f ∈ A(N) tal que, f(1) = 1. Entonces se tiene que,

ϑP
p(n,m) = θp(n−m+ 1) =



(
p+ n−m− 1

n−m

)
, p > 0,[

1
n−m+1

]
, p = 0,

(−1)n−m

(
−p

n−m

)
, p < 0.

iv) Sean p ∈ Z, z ∈ C, y f ∈ A(N) tal que,

f(n) = θz(n) =

{
zn−1

(n−1)! , z ̸= 0,[
1
n

]
, z = 0.

.

Entonces se tiene que,

ϑP
p(n, n−m+ 1) = θpz(m) ∀m = 1, . . . , n

Y por otra parte,

n∑
[p,P]

k=1

g(k) =

n∑
[p,θz(n)]

k=1

g(k) =

n∑
pz

k=1

g(k) ∀g ∈ A(N)

Problema 4.3 Sean f ∈ A∗(N∗) y p ∈ Z.
i) Recordemos lo siguiente.

1) Los Números de Stirling de segunda especie S, están definidos como,

S(n,m) = S(n− 1,m− 1) +mS(n− 1,m)

2) Números de Stirling de primera especie T, están definidos como,

s(n,m) = s(n− 1,m− 1) + (n− 1)s(n− 1,m)

Entonces, se pueden demostrar los siguientes enunciados.

a1) S−1(n,m) = (−1)n+mT(n,m)

a2)
n∑

S
k=0

f(k) = g(n) ⇔
n∑

T
k=0

(−1)kg(k) = (−1)nf(n)

a3 )
n∑

[p,S]
k=0

f(k) =

n∑
k=0

ϑS
p(n, k)f(k)
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ii) Coeficientes Gaussianos G, se definen de forma recurrente como,[ n
m

]
q
=

[
n− 1

m− 1

]
q

+ qm
[
n− 1

m

]
q

∀q ∈ C.

Entonces, se pueden demostrar los siguientes enunciados.

b1)
n∑

G
k=0

f(k) =

n∑
k=0

[n
k

]
q
f(k)

b2) ∀h, g ∈ A∗(N∗)
h(n) ∗G g(n) = g(n) ∗G h(n)

b3) Sean φ0(n) =

n∑
k=0

[n
k

]
q
(−1)kq(

k
2), φ1(n) = 1 y φ−1(n) = (−1)nq(

n
2).

Entonces definimos la siguiente función,

φp(n) =



φ1(n) ∗G · · · ∗G φ1(n)︸ ︷︷ ︸
p−veces

p > 0 ,

φ0(n) p = 0 ,

φ−1(n) ∗G · · · ∗G φ−1(n)︸ ︷︷ ︸
q−veces

p < 0, p = −q .

Demostrar que,

ϑG
p (n,m) =

[ n
m

]
q
φp(n).

b4)
n∑

[p,G]
k=0

f(k) =

n∑
k=0

[n
k

]
q
φp(k)f(n− k)

iii) Números de Catalán ordinarios, se definen de forma recurrente como,

Cn+1 =

n∑
k=0

CkCn−k y C0 = 1

y como es sabido, su forma general esta dada por,

Cn =
1

n+ 1

(
2n

n

)
.

Por otra parte, sea

F (n, k) =


Cn−k k ≤ n ,

0 k > n .
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Y definamos la matriz infinita,

F = (F (n,m))
∞
n,m=0

Entonces se puede probar lo siguiente.

c1) Sean φ1(n) = Cn y φ−1(n) = (−1)1−[ 1
n+1 ]Cn. Entonces se tiene que,

φ1(n) ∗ φ−1(n) =

[
1

n+ 1

]
c2)

φp(n) =



φ1(n) ∗ · · · ∗ φ1(n)︸ ︷︷ ︸
p−veces

p > 0 ,

[
1

n+ 1

]
p = 0 ,

φ−1(n) ∗ · · · ∗ φ−1(n)︸ ︷︷ ︸
q−veces

p < 0, p = −q .

Por lo tanto demostrar que,

n∑
[p,F]

k=0

f(k) =

n∑
k=0

φp(k)f(n− k)

Estos ejemplos describen de forma general, la manera en que los operadores
aditivos de origen matricial, cumplen la propiedad lineal en la iteración. Sin em-
bargo, se debe aclarar que no todos lo operadores aditivos, tienen una represen-
tación matricial, como se pude ver cuando la suma se realiza sobre multi-́ındices.
Es decir, se pueden definir operadores aditivos que cumplan la propiedad lineal
en la iteración sin que cuenten con una representación matricial asociada.
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