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Resumen

Las iteraciones respecto a una matriz ha sido ampliamente
desarrolladas con el estudio de coeficientes universales; los nimeros de
Stirling, los coeficientes binomiales, nimeros de Cataldn, entre otros
mas, la belleza de estos conceptos radica en que la muchas de las
propiedades bésicas de las recursiones aditivas sobre funciones
aritméticas estdn fundamentadas por el algebra matricial, por lo tanto,
en este texto se estudian de forma simple dicha propiedad general
aplicada a iteraciones de funciones sobre el operador Suma.

1. Introduccion

Primero estudiemos las funciones tipo binomiales y algunas de sus propie-
dades. Sea P(1,1) € C y consideremos una funcién aritmética f tal que,

Pn—1,m)+ f(m)Pn—1,m—-1) 1l<m<n,

P(n,m) =
0 n <m.

Entonces se tiene por su definicién que,

P(2,1) = P(1,1),

P(2, f(2)P(1,1),

P(3,1) = P(2,1)=P(1,1)

P(3,2) = P(2,2)+ f(2)P(2,1) = f(2)P(1,1) + f(2)P(1,1) = 2f(2)P(1,1)



3f(3)f(2)P(1,1)
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f(r+1)P(1,1)
Vn,m € N.

1
)

)

m

(
P(1,1

P(n,1)

De lo anterior se deduce la siguiente forma general,
Pn+1;m+1)
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En particular, considerando f(1) = P(1,1) se tiene que,

m

Povm = () T (12)

Y manipulando se obtiene,

P(n,m)

Il
7N
3 3
.
_
N———
— s
g
=

Por lo tanto,

m

Pom) = () I (=) 0 (20

r=

Esta ultima expresién sera tutil para entender algunas propiedades sobre
sumas que involucran producto de coeficientes tipo binomiales.

2. Representacion matricial

Por otra parte, es facil notar que para cualquier funcién de dos variables
M(n,m) tiene al menos una expresién matricial asociada, M., descrita como,

MO,1) - M(1,m)
n,m . .
anm = (M(kas))k7521 = : :
M(n,1) --- M(n,m)

Por lo tanto, es conveniente definir la matiz asociada a (L) como un matriz
triangular,

oo = (PO, = (52T, f())ki | )

Entonces se tiene que,

f(1) 0 0 0
f() f)f(2) 0 0
f() 2f(1)f(2) F)f(2)£(3) 0

]P)TL(L""L: . . . . .
n—1 n— 1\ n—1y Cn—1\

1 Df (2 Df© D)eee f(m

( 0 >f()< 1 )f( )f()( 9 )f( )f(2)£(3) <m—1>f() f(m
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Ahora que se cambio a una representacién matricial, lo siguiente es encontrar
la matriz inversa para las versiones cuadradas de , para esto es suficiente
revisar algunos valores de la matriz P,,;,,. Lo primero es considerar la restricciéon
f(n) #0 ¥n € N para que la versién cuadrada de la matriz sea invertible,
una vez eludiendo este hecho veamos lo siguiente.

Pi; = (f(1) = Pl = (f71(1)
()0 AT 0
IF”M—(f(l) f(l)f(2)) = Pw‘(—f—l(wf-l@) f-1<1)f—1<2>>

(1) 0 0 L ) 0 0
P3.3 = (f(l) F()f(2) 0 ) = P33 = W) FTH N2 0
F) 2f(W)F(2) F)F(2)£(3) FYOFTr@)FTIE) 28T FIB) SR FAB)

De forma recursiva se obtiene que,
k-1 wn
-1 — k —
Pt = (o (D) L o) (@)
k,s=1
Hasta este punto tenemos lo suficiente para introducir como se integran los
conceptos de iteracién y la propiedad lineal que esta justificada en el dlgebra de

matrices, tomando como referencia a las funciones tipo binomiales y su repre-
sentacion matricial.

3. Definicién de iteradas sobre el operador X
respecto a una matriz

Primero recordemos algunos conceptos que cubran el caso general para apli-
carlo en las funciones tipo binomiales.

Observacion 3.1
i) Ao(N)={f|f:Na2N — C}
i) Myori(C) = {M = [f(p.9)ljen : f € A2(N)}
i11) TInen(C) = {M € Mn,n(C) | MI* =0 Vn < m}
i) TIIngn(C) = {T € TInen(C) | TP #0 ¥n € N}

v) N* =NuU {0}
vi) AN = {f|F: N* — T}
Vi)

Hamb . MNCDN(C) — Maxb(c)
Ha:}cb(T) — Taxb = [T(’I", S)H§iéz

donde, I pq = 11,.
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Ahora tenemos lo necesario para introducir un concepto de operador Suma
respecto una matiz. Nos centraremos solo en las matrices triangulares inferiores
pero la definicién pude hacerse para un caso mas general.

Definicién 3.2 Sean f € AN) y T € TInyn(C). Diremos la suma de la f
operador 3 respeto de la matriz T es una funcion aritmética h tal que,

h(n) = 3 T(n, k) ()

y lo de motaremos como

3

k=1

Para entender la definicién anterior lo que se induce es un operador aditivo
respecto a una matriz T € My,n(C) sobre las funciones aritméticas, esto es,

St AN) = AN).

Por lo tanto, a partir de aqui vamos a suponer que se conoce el término de
operador aditivo Y.

Definicién 3.3 Sean f € A(N), T € TIyn.n(C) y m € N. Diremos que la fun-
cion iterada de grado m de f respecto del operador Yp es una funcion aritmética
h tal que,

k1 km—2 km-1

hn) =3 > > > k)

ki=1 k2=1 km—1=1km=1

o de forma explicita,

n k1 km—2 Em—1
h(n) =Y T(nky) Y Tlkyka)- > T(km-a,km-1) > T(km—1,km)f(km)
ki=1 ko=1 km—_1=1 km=1

y la denotaremos como
n

> iy /(R

k=1

Definicién 3.4 Sean f € A(N) y T € TIn.n(C), entonces diremos que f es su
funcion iterada de grado 0 respecto del operador Xr y denotaremos esto como

Doy /) = F().

k=1
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Definicién 3.5 Sean f € A(N), T € TIlnyn(C) y m € N. Diremos que la
funcion iterada dual de grado m de f respecto del operador Xt es una funcion
aritmética h tal que,

o de forma explicita,

n k1 km—2 K —1
Fn) =" T(nk) > T(krka)-- > Tlhmzkm-1) Y T(km—1,km)h(km)
k1=1 ko=1 km—1=1 km=1

y la denotaremos como

Z[,m,n f(k).
k=1

Como se puede ver en esta definicién se ha supuesto que T(n,n)#0 y la
respuesta es simple, ya que al asociar la matriz triangular T, se tiene que T es
invertible si, y sélo si, sus entradas diagonales son distintas de cero. Asi, la

existencia de .
k
>y [

k=

1
depende de la matriz T' € STy,n(C).

Definicién 3.6 Seanp € Z y T € T1In.n(C). Entonces definimos la siguiente
funcion

Oy (s.t) = [IP(T)], = T"(s,1)

Lo que describe estd definicién no es méds que la entrada M! de la matriz T?
que es una potencia entera de T'. Por lo tanto, tenemos el siguiente resultado.

Teorema 3.7 Sean Vn € N, f € A(N), p € Z y T € TIIyn(C). Entonces se

tiene que,
n

D [ B) =205 () (k).
k=1

k=1

Demostracion. Se sigue de la definicién de producto matricial y de las definicio-
nes de iteradas sobre el operador Xp.
i) Para p = 0 es claro porque 7° = I. Entonces

n

S 0T R)F(R) = 0n (k) = F(n).
k=1

k=1
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Y por la Definicién 3.4

n

>

k=1

)

o 0 = F0)

ii) Ahora supongamos que es cierto para alguna p > 0, es decir,

n n

Z[p,T] k) = Zﬁ;(”a k)f(k).

k=1 k=1

Se satisface, por otra parte recordemos que por el producto de matices
a
TP(s,t) =Y TP~ (s,7)T(r,1).
r=1

Asi por la hipétesis de induccién sabemos que,
n
k =
Z[nT ] J(k)

k=1 k=1

9T (n, k) f(k).

p

NE

Ahora aplicando el operador X7 se tiene que,
n k n L
= T
ZT Z[P’T] f(k) = ZT Z U, (k, k1) f (k).
k=1 f,=1 k=1 ki=1

Entonces por la Definicién 3.3 se tiene que,

n

k
[p+1,7] F(k) = ZT Z OF (K, k) f (k1)

k=1 k=1 ki=1

Y por otra parte,
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n

k n k
o> Oy (k) fke) = D Tn,k) Y 05 (ko ki) f(ka)
k

k=1 ki=1 1 ki=1

|
NE
™=

T(n, k)97 (k, k1) f (k1)

b
Il

1

o

1=1

T, k)97 (k, k) (k)
n+1
T(n,k1)0] (k1, k) f (k)

+1

e
+
I

1

x>
+
&
Il
3

)=

T(n, kl)ﬂg(khk)f(k)

o
iy

=
_

T(n, k)T (ky, k) f (k)

o
S

I
M+ IMs I

Eod

Il

—
YO

- L

T(n, k1 )T? k1, k)) f(k)

k1

P (n, k) f (k)

1

I
NIE
S

el
I
—

[
NE

Upsa(n, k) f (k).

>
Il
—

Por lo tanto se sigue que,
T
D S B = kzlﬁpmn, k) (k).

k=1 =

iii) Para p < 0 es andlogo al caso anterior.
Con lo que se tiene demostrado el resultado.
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Por tdltimo, solo definamos el producto de Cauchy para el operador X

Definicién 3.8 Sean g, f € A(N) y T € TIIynyn(C). Diremos que la convolu-
cion de las funciones aritmeticas f y g es una funcion aritmética h tal que,

n

h(n) = ZT fR)gn+1—k)=>_ T(nk)f(k)g(n+1- k).
k=1

k=1
y lo denotaremos como,

h(n) = f(n)«" g(n)

Este producto es claramente no abeliano en general. Para finalizar comen-
taremos que la propiedad lineal en la iteraciéon del operado X se sustenta en
algebra de matrices y abarca una gran diversidad de casos, incluso cuando la
suma no se realiza sobre funciones aritméticas.

4. Ejemplos de iteraciones del operado X res-
pecto a una matriz

Problema 4.1 Sean n € N y f € A(N) tal que,

Pn—1,m)+ f(m)Pn—1,m—-1) 1l<m<n,

P(n,m) =
0 n<m.

Sin pérdida de generalidad, se consideran solo los casos f(1) = P(1,1) En-
tonces por su definicion y de su representacion matricial se tiene que,

N (LY

s k,s=1

P = ((‘m_s (k 0 ) I f—l(m)"’"

s k,s=1
I) Demostrar que son equivalentes,

i)

www.mathsingular.com.mx 9
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II) Seann € N, p € Z y f(n) = 1. Entonces se tiene lo siguiente,

i)
<n1>p”1 p#0,

m—1
P _
ﬂp(n,m) =

iii) Vh, g € A(N)
h(n) ¥ g(n) = g(n) +* h(n)
iv)

III) Sean a,b,c,d,n,m € N, z1,--+ 2, € C, wy,---wp € C qq,---

g,h € A(N).

Recordemos lo siguiente,

zilzi+ D(zi+2) - (m+m—1) =2 #0,
R

wi(wi—l)(wi—2)~--(wi—m—|—1) ’lUl;éO,

w; = 1
m
/ 1—g 1—¢f! 1—gf—mH!
q _JED) () () ao
), -

Entonces deﬁnamos la siguiente funcion,

C

. € Cy

1_qd m—+1
il H( )<zm+m_1><ww_m+1).

T = 17“2 17‘3 1

www.mathsingular.com.mx
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Demostrar que son equivalente
1)
e /n—1 7 1 |d
m)y =TT IT I X_(, 1) =i, o)
ri=1ro=1r3=1k=1 dr3
2)
n n—1 . a b c o d
S (Y vt = T1 TT 1T 5[] ot
q

k=1 ri=1ro=1rz=1 rg
1
Problema 4.2 Sea f,hy(n) € AN) tal que f(1) #0. y f(n)*hy(n) = {n] :

Por otra parte, sea

Y definamos la matriz infinita,

F = (F(n, m))f:m:o .
Por altimo, ¥p € Z definamos la siguiente funcion,
fn)s---xf(n)  p>0,
—_—
p—veces
1
o =4 |+] p=0,

n

hy(n)*---xhg(n) p<0,p=—q.
g—veces

Entonces se puede demostrar lo siguiente.
i) Vp € Z se tiene que,

95 (n,m) = F377(n+1—m)
i1) Vp € Z, Vg € A(N) se tiene que,

n

S 90 =Y F (g 1 k)

k=1 k=1

Es decir,
n

k) = k
Z[p,m 9(k) ;[p,f(n)] 9(k)

k=1

www.mathsingular.com.mx 11
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iii) Vp € Z, y f € A(N) tal que, f(1) = 1. Entonces se tiene que,

—m—1
(rrromt) e

n—m
92 (n,m) = Op(n —m + 1) = {ﬁm“} p=0,

(—1)n—m (n_pm> , p<0.

FEntonces se tiene que,

Op(n,n—m+1)=0,.(m) Vm=1,...,n
Y por otra parte,

n n

Z[pJP’] 9(k) = Z[pﬂz(n)] g(k) = Z g(k) Vg e A(N)

k=1 k=1 k=1

Problema 4.3 Sean f € A*(N*) yp € Z.

i) Recordemos lo siguiente.

1) Los Nuimeros de Stirling de sequnda especie S, estdn definidos como,

S(n,m)=Sn-1,m—1)+mS(n—1,m)

2) Numeros de Stirling de primera especie T, estdn definidos como,

s(n,m)=s(n—1,m—1)4+ (n—1)s(n —1,m)

Entonces, se pueden demostrar los siguientes enunciados.
a;) S7Y(n,m) = (—=1)"*™T(n,m)
CLQ)

a3)

www.mathsingular.com.mx
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it) Coeficientes Gaussianos G, se definen de forma recurrente como,

n n—1 n—1
[ ] = [ ] +q™ { } Vg € C.
mlq m—1 q m |,
Entonces, se pueden demostrar los siguientes enunciados.
b1)

S =[] s
k=0 k=0 a
by) Vh,g € A*(N)
h(n) € g(n) = g(n) +° h(n)
bs) Sean go(n) = 3 [1] (~1*E), or(m) = 1y oa(m) = (-1,

k=0
Entonces definimos la siguiente funcion,

v1(n) *G~~*Gg01(n) p>0,
p—veces
pp(n) = { go(n) p=0,
p_1(n) %« 1(n) p<0, p=—gq
q—veces

Demostrar que,

bs)
> B =2 1] ks

k=0 k=0

i11) Nimeros de Cataldn ordinarios, se definen de forma recurrente como,
n
C(n-i—l = § CiCrk ) Co=1
k=0

y como es sabido, su forma general esta dada por,

- 1 (271)
n+1l\n

Por otra parte, sea

www.mathsingular.com.mx
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Y definamos la matriz infinita,

F = (F(n,m)),;

n,m=0
Entonces se puede probar lo siguiente.

c1) Sean o1(n) = C, y @_1(n) = (—1)1_[#1]071. Entonces se tiene que,

pr(n) oo () = [—

02)
p1(n) * - *p1(n) p>0,

p—veces

Por lo tanto demostrar que,

n

D T =D ep(k)f(n— k)

k=0

Estos ejemplos describen de forma general, la manera en que los operadores
aditivos de origen matricial, cumplen la propiedad lineal en la iteracién. Sin em-
bargo, se debe aclarar que no todos lo operadores aditivos, tienen una represen-
tacion matricial, como se pude ver cuando la suma se realiza sobre multi-indices!
Es decir, se pueden definir operadores aditivos que cumplan la propiedad lineal
en la iteracion sin que cuenten con una representacién matricial asociada.
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