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Resumen

Se estudian los operadores discretos aditivos con representacién
matricial asociados a subconjunto de N, los cuales provistos con el orden
usual de N, definen matrices triangulares infinitas con entradas de ceros

y unos, se introducen los conceptos de iterada sobre estos operadores
mostrando con tres ejemplos la propiedad lineal de la iteracién.

1. Introduccion

La referencia obligada para este texto son las dlgebras de incidencias que
son las que fundamentan de forma general las iteraciones sobre los operadores
aditivos con representacién matricial. Sin embrago, es conveniente introducir
varios de los conceptos desde un punto de vista elemental que sirve como re-
ferencia para los casos generales, en este contexto hemos optado por presentar
el concepto de suma sobre conjuntos nimeros Naturales, es decir, asociando al
operador ¥ ciertos conjuntos de niimeros Naturales, definiendo asi operadores
aditivos que pueden ser iterados sobre las funciones aritméticas y mostrando
que dichas iteraciones cumplen la propiedad lineal fundamentada en el dlgebra
matricial asociada a los conjunto de nimeros naturales sobre los que se realiza
suma. Para un estudio detallado y completo se puede revisar las referencias, de
igual forma es conveniente estar familiarizado con la notaciéon usada en Itera-
ciones sobre el operador X respecto de los conjuntos de factores los niimeros
Naturales y algunos ejemplos.

Para empezar recordemos algunos conceptos basicos de subconjuntos de N.

Observacién 1.1 Sea Pr(N) = {ACN : 0<|A] , |A| € N} el conjunto de
subconjuntos finitos no vacios del conjunto N.

i)Entonces podemos notar que VB € Pp(N) existe un conjunto Cp € Pp(N)

tal que Cp = {1,2,...,np} donde np = |B|, ademds como es usual sea Sy, =
S(Cp)={e:Cp—B|e es biyectiva}.

i) Por otro lado, si A(Pr(N)) ={k | k: Pr(N)=>C} y Ap(N) ={a| :N—=Pp(N)},
entonces f = aok € A(N) para cada o € Ap(N) y k € A(Pp(N)).
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Observacién 1.2 Para cualquier v € Ap(N) = {a | a: N=P(N)} se puede
asociar una matriz infinita B, € Myyn(C) definida como

E, = [E(n,m)|"SY tal que

1, meA,=n~n),
0, méeA,=n~n).

Y por ultimo, veamos la siguiente definicién.

E,(n,m) = {

Definicién 1.3 Sean f € A(N), B € Pp(N) ye € S(Cg), entonces diremos que

la suma de la funcidn f sobre el operador Z [ ] estd dada como,
peEB
np
> Fp) =) fe(k)).
peEB k=1

2. Nociones de conjuntos asociados a la defini-

cién de los operadores Z[ |y Z[ ]
dln k=1

Ahora que ya contamos con las herramientas suficientes, empezaremos por
n

comparar la relacién que existe entre os operadores Z f(k)y Z f(d). Primero,
k=1 d|n

veamos que estos operadores tienen la misma naturaleza, ambos representan una

suma cuando se aplican a los elementos del conjunto A(N), para cada nimero

natural n, con la diferencia que el conjunto finito de niimeros naturales sobre el

que se realiza la suma en cada caso es distinto, veamos esto a detalle.

Observacion 2.1
n

i)Cuando ocupamos el operador Z[ Vn € N, estamos asociando al operador

k=1
> una funcion f € Ap(N) = {a| a: N=Pp(N)}, es decir, le asociamos una
sucesion de subconjuntos de numeros naturales tales que

Bn)=B,={meN : 1<m<n}VneN

n
Por lo tanto, podemos escribir Z[ ] como Z [ ]
k=1 pEBn=0(n)

Ademds, segin la Observacion a cada B, = B(n) le asociamos una
funcion e, € S(By,) tal que £,(p) = p, ya que en este caso se tiene que Cpg, =
B,,,VYn € N. Por tanto, si denotamos como < al orden usual de los niumeros
Naturales, entonces €, : (Cp, ,<)—=(B, ,<) es un isomorfismo Vn € N, esto
dltimo indica el orden en el que se tomardn a los elementos de B, = [(n)
cuando se realice la suma.
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it)Andlogamente al inciso anterior, cuando se utiliza el operador Z[ |Vn eN,
d|n

estamos asociando al operador Y, una funcion a € Ap(N) = {a | a : N=Pp(N)}.

Esto es, le asociamos una sucesion de subconjuntos de numeros naturales tales

que, a(n) = A, = {d € N : d|n}Vn € N. Por lo tanto, podemos escribir

Z[ ]¥n € N como
d|n

Z [ ]VneN

pEA=a(n)

y segun Observacion a cada A, = a(n) le asociamos una funcion e, €
S(Ay) tal que g, 1 (Ca,, ,<)— (4, ,<) es un isomorfismo Vn € N.

Entonces, podemos notar que la diferencia fundamental que existe entre los
n

operadores Z[ ly Z[ ] surge porque en cada caso se asocia una funcién
d|n k=1
v € Ap(N) diferente al operador ) ademds de una sucesién de isomorfismo
en ¢ (Cp, ,<)=(Dyp ,<) ( con el orden usual de N ) tales que D,, = v(n)
Yn € N.
Por otro lado, si aplicamos la Definicién a cualquiera de los casos
anteriores conservando la notacién utilizada en ellos tenemos que, Vf € A(N),

para cada B,, = f(n) y €, € S(B,,) la suma de la funcién f sobre el operador

Z [ ][VneN

pGBn:ﬁ(’ﬂ)
esta dada por la igualdad
mpg(n)
Y @)=Y flealk)
peB(n) k=1

y con ayuda de ésta podemos definir una funcién k € A(Pr(N)) tal que
pEB(n)

Y por otra parte como la suma describe una funcién aritmética, entonces existe
una funcién g € A(N) tal que

g(n)= > f»)
pEB(n)

Pero esto nos genera un problema, ya que cuando aplicAbamos el operador

> 11

pEBn=p(n)
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sobre el conjunto A(N) obtenfamos una tnica funcién g € A(N) y ahora también
debemos de asociar una funcién k € A(Pr(N)) que tiene una naturaleza distinta
a las funciones aritméticas. Sin embargo, esto no deberia sorprendernos y menos
causarnos algin conflicto puesto que la funcién g € A(N) y la funcién k €
A(Pr(N)) denotan la misma suma

mB(n)

S fp)= Y flen(k)) VneN.
k=1

peB(n)

Esto es claro, por la Observacion se tiene que que g = ok € A(N) donde
B e Ap(N)y k€ A(Pp(N)).

Por lo tanto, reescribiendo lo anterior tenemos que Vf € A(N), para cada
B, = B(n) y e, € S(By,) tales que

En * (CB" 7§)4)(Bn ’S)

es un isomorfismo, entonces la suma de la funcién f sobre el operador

> 11

peanﬁ(n)

define una funcién aritmética g dada por la igualdad

g(n)=Bokn)= > f(p)

peB(n)

donde k € A(Pr(N)) esta dada como

k(B,) = Y_ flp)¥neN.

pEB(n)
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3. Definiciones

El andlisis del apartado anterior nos permite visualizar el tipo de generali-
zaciones que haremos a continuacion, éstas consistirdan en asociar elementos del
conjunto A(Pr(N)) con el operador Y y sobre dichas asociaciones establecere-
mos nuevas definiciones. Nos vamos a restringir al conjunto

QUPp(N)) ={ae A(Pr(N)) : {n} Ca(n) C{1,..,n} VYneN},

va que, segun la Observacién a cada a € Q(Pr(N)) le podemos asociar
una matriz triangular inferior infinita invertible con entradas complejas, en par-
ticular a Q(Pr(N)) se le pueden asociar matrices invertibles de ceros y unos.
Primero, establezcamos la siguiente definicion,

Definicién 3.1 Sean f € A(N) y 8 € Q(Prp(N)). Ademds, a cada B, = B(n)
le asociamos una funcion €, € S(By) tal que e, : (Cp, ,<)—=(B, ,<) es un
isomorfismo Yn € N con el orden usual de N, entonces diremos que la suma de

la funcidn f sobre el operador
Z [ ]VneN

pEBr=p(n)
es una funcion aritmética g definida por la igualdad
gln)=Bokn) = > f(p)
pEB(n)

donde k € A(Pp(N)) estd dada por

k(Bn)= > f(p)¥neN.

p€EB(n)
Recordando que por la Definicién la igualdad
gn) =Bokn) = > f(p)
peB(n)

estd definida como
s

Yo f) =) flealk)

p€B(n) k=1

donde r = |3(n)| Vn € N. Por otra parte, vemos lo siguiente,

Definicién 3.2 Sean f € A(N) y 8 € Q(Pp(N)). Ademds, a cada B, = B(n)
le asociamos una funcion €, € S(By,) tal que e, : (Cp, ,<)—=(B, ,<) es un
isomorfismo con el orden usual de N, entonces definimos la funcion f como

fp) = flealr+1—k)) Vpe By, p=cn(k)
donde r = |B(n)] Vn € N.
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Y con esto podemos ver lo siguiente.

Observacién 3.3 Sean o, € Q(Pr(N)) tales que, a(n) = A, y 8(n) = Bh.
Entonce es inmediato que,

i) v(n) := a(n)Up(n) =y € Q(Prp(N))
i) y(n) == a(n) N (n) = v € UPrN))
Asi, utilizando las definiciones anterior se tiene que,
Definicién 3.4 Sean f € A(N) y 8 € Q(Pr(N)). Ademds, a cada By, = (n)
se asocia una funcion e, € S(By,) tal que e, : (Cp,,, <)—(Bn, <) es un isomor-

fismo con el orden usual de N. Entonces Vm € N diremos que la funcion iterada
de grado m de la funcion f sobre el operador

> 1]
peBn=B(n)
es una funcion aritmética h tal que

h)= >, D>, Y >, Jfm)¥neN

p1€BR(n) p2€L(p1) Pm—1€B(Pm—2) PmEB(DOm—1)

> f).

peB(n)

y la denotaremos como

Observacién 3.5 Sea f € A(N), entonces diremos que f es su funcion iterada
de grado 0 sobre el operador
> [

pEanﬁ(n)
y denotaremos esto como

fmy =3 fo).

peB(n)
Andlogamente,

Definicién 3.6 Sean f € A(N) y 8 € Q(Pr(N)). Ademds, a cada B, = (n)
le asociamos una funcidn €, € S(B,) tal que €, : (Cp,,<)—= (B, ,<) es un
isomorfismo con el orden usual de N, entonces YVm € N diremos que la funcion
iterada inversa (dual o reciproca de grado m) de grado —m de la funcion f sobre

el operador
> 1]

pEBL=B(n)

es una funcion aritmética h tal que,

fy= > > Y Y h(pm)VneN

p1€B(N) p2€B(P1)  Pm—-1€BPm—2) PmEB(Pm-1)
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y la denotaremos como,

> T

peB(n)

Ahora daremos la definicién el producto de Cauchy en términos de esta
seccion.

Definicién 3.7 Sean f,g € A(N) y 5 € Q(Prp(N)). Ademds, a cada B, = 5(n)
se asocia una funcion €, € S(B,) tal que €, : (Cp, ,<)—=(B, ,<) es un iso-
morfismo con el orden usual de N, entonces definimos el producto o convolucion
de Cauchy de las funciones aritméticas f y g como

frgn)= Y fulp)g(p) YneN.
pEB(n)

Cabe mencionar que este producto es conmutativo por su definicion.

Definicién 3.8 Seann € Nyp € Z y § € Q(Prp(N)). Ademds, a cada B, =
B(n) le asocia una funcion e, € S(By,) tal que €, : (Cp, ,<)—=(B, ,<) es
un isomorfismo Yn € N con el orden usual de N, y consideremos la matriz
Ts = [0(n, m)]i&

1, meB,=03(n),

o) = {0, m ¢ B, = Bn).

Entonces definimos la siguiente funcion;
o (s,t) = ME(Tp)ls = Tf(s.t)  Vs,t€N.

Para finalizar la secciéon no queda més que dar el resultado de linealidad
respecto a la iteracién sobre las funciones aritméticas.

Teorema 3.9 Sean f € A(N),neN, g€ Zyp € QPr(N)). Entonces se tiene

que
n

> 1) =30 (k) f ().
pEB(n) k=1

Demostracion. Se sigue de las propiedades matriciales. |

Con este resultado terminamos el estudio la propiedad lineal en la iteracién
del operador Suma sobre las funciones aritméticas respecto a conjuntos finitos
de niimeros naturales restringidos a Q(Pr(N)), lo cual es un caso particular de
los operadores aditivos definidos respecto de matrices, ya que lo anteriormente
expuesto solo considera matrices infinitas de ceros y unos.

www.mathsingular.com.mx 7


https://mathsingular.com.mx

Este trabajo tiene licencia CC BY-SA 4.0

4. Ejemplos

Ejemplo 4.1 Sea n € N, p € Z y f,g € A(N). Definimos la matriz B =
[B(n,m)]nm,en tal que,

1, meA,,
B(n,m) =
0 m¢A,.
donde,
A, ={meN:minom=n}
Por otra parte, denotaremos al operador aditivo asociado como, Z []

e
Es claro que, Z []1= ZHEZB[ ].

d<n: din deA, k=1
d=n

Ademas, resulta inmediato que,

Z l=n-208(n)+1

din
<n:
d<n den

Por otra parte, suponiendo que,

gm(n)= Y f(d)
d<n: 90
- d=n
Mostraremos con cdlculos numérico la teoria, para esto vamos a hallar, 23 f(a).
a7
d<7: 17
Solucién. Veamos que por la definicion,

() = f(Q1)

a2) = f(2)

a3) = f2)+f03)

ad) = f3)+f4)

a(B) = f@)+fB)+f4)+f(5)

g1(6) = f(4)+ f(5)+ f(6)

a(7) = f@2)+ fB)+ f(4)+ f(5) + f(6) + £(7)
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2) 4+ 12f(3) +10(4) + 6£(5) + 3f(6) + f(7)

—

12f

Por lo tanto,

L@ = 3 )
deAr

d<T7: U7

7

d=

SN Y flay)

d1€A7 d2€Aq, d3€Aqy,

121(2) +12f(3) +10(4) + 65(5) + 3£(6) + f(7)

Ahora, procedemos usando la propiedad lineal de la iteracion fundamentada

por el dlgebra de matrices.

. \\|||I/
OO0 o0c0o
coococoomOOO0OHM
cooooHHPEEEMO
cooo———oooHm©oS
COO i
OO—H—H—O—
OO —O 013375H
—ooocooo
—o00000

((

commonr

) y£§x7

[clelolelolal]
[elelelolaloia]
[slelelalolala]
OO —NM<H
OO—HNMANH
O M —<H
ialelolelelele]

Por la definicion de B tenemos que, Brzr

2
Entonces, B7,;
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Por otro lado,

Ast,

D, S = X W)

L diT k=1
<7
=7 d=7

= D 05 k)f(k)
k=1
= 12f(2) + 12/(3) + 10(4) + 6£(5) + 3£(6) + £(7)

Ejemplo 4.2 Sean € N, p € Z y f,g € A(N). Definimos la matriz B =
[B(n,m)]n.m.en tal que,

1, meA,,
B(n,m) =
0 m¢éeA,.
donde,
A, ={m<n:(n,m)=10m=n}
Por otra parte, denotaremos al operador aditivo asociado como, Z []
d<n: (d,n)=1
d=n

Es claro que, Z []1= Z[ | = ZB[ ]

d<n.: (dn)=1 deA, k=1
- d=n

Ademds, resulta inmediato que,

> 1:¢(n)+1—{n}

d<n: (dn)=1
=n d=n

Por otra parte, suponiendo que,

Hallaremos, Z, . f(d).

4,5)=1
a<s: (d:
S aLs
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Solucion. Veamos que, por la definicion del operador aditivo se tiene que,

S =gaB) == Y ga(d)

.(d,5)=1 d<s: (d;5)=1
d<5: d=5 - d=5

Por lo tanto,

fA) = g-1(1)
f(2) = g-1(1)+g9-1(2)
fB) = g-1(1) +9-1(2) + 9-1(3)
fd) = g-1(1) +9-1(3) + g-1(4
fG) = g1(1)+g-1(2) +9-13) +9-1(4) + g-1(5)
Entonces resolviendo,
g-1(1) = f(1)
g-2(1) = f(2)-f(1)
9-13) = f(3)—f(2)
g-1(4) = f4)—-fB)+f(2)-fQ)
9-1(5) = f(5)—f(4) - f(2)+ f(1)

Por lo tanto,

d<5: (d,5)=1 deAs

= g-1(5)
= f(5) = f(4) - f(2)+ f(1)

Por la definicion de B tenemos que, Bgys =

0O 0 00
1 0 0O
-1 1 00
1 -1 10
-1 0 —-11

1

=T

1
-1 _ -

Entonces, By s = <_0
1

Por otro lado,
19]31(7% m) = Bga:15(nv m)

Asi,
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5
DOINNICRED SN

d<s: (df):l k=1

=5

5
= Y (k) f(k)
k=1
= f(3) = f(4) = f2) + f(1)

|
Ejemplo 4.3 Sea n,t € N, p € Z, z € C, y f,g € A(N). Definimos B =
[B(nam)]n,m,EN tal que, B= [B(n7m)]n,m,€N tal que,
1, meA,,
B(n,m) =
0 m¢A,.
donde,
A, ={m<n:6(m)=2o0m=n}.
Por otra parte, denotaremos al operador aditivo asociado como, Z [ ]
dgn:‘s(dd:)zQ
Es claro que, Z []= Z []= ZE[ ].
dfniﬁ(dd:)z2 deA, k=1
Ahora definamos las siguientes funcion aritmética sobre Z [],
L6(d)=2
d<n: (d:)n
ay) &(n) = Z 1, es claro que £(n) = |Ay|.
d<n: (D=2
1, dn)<2,
az) @w(n) =
0 d&(n)>2.
Por otro lado, de la definicion del operador aditivo Z [ ]y usando

dfn:ésid):2
=n
las definiciones conocidas de la funciones aritméticas p, p,d. Demostrar que,
i)
&p(n) = prl 1 & &n(n) =0, 0&(n)

d<n:
d

=N
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t—1

Pt
donde, 0,(t) = {(t—l)!? p#0,

;. p=0
i)
Y, fd= Y @5
dgnié(d:):2 dSn:‘sEi‘Q=2
iii) 1
S 8(d) = 26(m) +5(n) + M s
dgn:é(d:)z2
iv) 1
Z (d—o( ))—(n¢(n))+§(n)+{] 9
d<n: 5(222
v)
> @(d) =¢&(n) —w(n) +1
cl§7l:5(d:):2
vi)
> (@(d)+pu(d) = u(n) + w(n) +2
d<n:6(d:)z2
vii) Sea
gz(n) = 02 o {(n)
donde,

y definamos

Y )= Fd)e. (@)
d<n 5&2:2 dSn:551d:i2

- g 2 (%)
Z% f(d) = - f(d) 226(d) (2¢(d) — 1) ( (d)
d<n 651(1:):2 dsn: d=n
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