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Resumen

Se estudian los operadores discretos aditivos con representación
matricial asociados a subconjunto de N, los cuales provistos con el orden
usual de N, definen matrices triangulares infinitas con entradas de ceros
y unos, se introducen los conceptos de iterada sobre estos operadores

mostrando con tres ejemplos la propiedad lineal de la iteración.

1. Introducción

La referencia obligada para este texto son las álgebras de incidencias que
son las que fundamentan de forma general las iteraciones sobre los operadores
aditivos con representación matricial. Sin embrago, es conveniente introducir
varios de los conceptos desde un punto de vista elemental que sirve como re-
ferencia para los casos generales, en este contexto hemos optado por presentar
el concepto de suma sobre conjuntos números Naturales, es decir, asociando al
operador Σ ciertos conjuntos de números Naturales, definiendo aśı operadores
aditivos que pueden ser iterados sobre las funciones aritméticas y mostrando
que dichas iteraciones cumplen la propiedad lineal fundamentada en el álgebra
matricial asociada a los conjunto de números naturales sobre los que se realiza
suma. Para un estudio detallado y completo se puede revisar las referencias, de
igual forma es conveniente estar familiarizado con la notación usada en Itera-
ciones sobre el operador Σ respecto de los conjuntos de factores los números
Naturales y algunos ejemplos.

Para empezar recordemos algunos conceptos básicos de subconjuntos de N.

Observación 1.1 Sea PF (N) = {A ⊂ N : 0 < |A| , |A| ∈ N} el conjunto de
subconjuntos finitos no vaćıos del conjunto N.
i)Entonces podemos notar que ∀B ∈ PF (N) existe un conjunto CB ∈ PF (N)
tal que CB = {1, 2, ..., nB} donde nB = |B|, además como es usual sea SnB

=
S(CB) = {ε : CB→B | ε es biyectiva} .
ii) Por otro lado, śı A(PF (N)) = {k | k : PF (N)→C} y ΛF (N) = {α | : N→PF (N)} ,
entonces f = α◦k ∈ A(N) para cada α ∈ ΛF (N) y k ∈ A(PF (N)).
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Observación 1.2 Para cualquier γ ∈ ΛF (N) = {α | α : N→P (N)} se puede
asociar una matriz infinita Eγ ∈ MNxN(C) definida como
Eγ = [E(n,m)]m∈N

n∈N tal que

Eγ(n,m) =

{
1, m ∈ An = γ(n),

0, m /∈ An = γ(n).

Y por último, veamos la siguiente definición.

Definición 1.3 Sean f ∈ A(N), B ∈ PF (N) y ε ∈ S(CB), entonces diremos que

la suma de la función f sobre el operador
∑
p∈B

[ ] está dada como,

∑
p∈B

f(p) =

nB∑
k=1

f(ε(k)).

2. Nociones de conjuntos asociados a la defini-

ción de los operadores
∑
d|n

[ ] y
n∑

k=1

[ ]

Ahora que ya contamos con las herramientas suficientes, empezaremos por

comparar la relación que existe entre os operadores

n∑
k=1

f(k) y
∑
d|n

f(d). Primero,

veamos que estos operadores tienen la misma naturaleza, ambos representan una
suma cuando se aplican a los elementos del conjunto A(N), para cada número
natural n, con la diferencia que el conjunto finito de números naturales sobre el
que se realiza la suma en cada caso es distinto, veamos esto a detalle.

Observación 2.1

i)Cuando ocupamos el operador

n∑
k=1

[ ]∀n ∈ N, estamos asociando al operador∑
una función β ∈ ΛF (N) = {α | α : N→PF (N)} , es decir, le asociamos una

sucesión de subconjuntos de números naturales tales que

β(n) = Bn = {m ∈ N : 1 ≤ m ≤ n} ∀n ∈ N.

Por lo tanto, podemos escribir

n∑
k=1

[ ] como
∑

p∈Bn=β(n)

[ ].

Además, según la Observación 2.1 a cada Bn = β(n) le asociamos una
función εn ∈ S(Bn) tal que εn(p) = p, ya que en este caso se tiene que CBn

=
Bn,∀n ∈ N. Por tanto, si denotamos como ≤ al orden usual de los números
Naturales, entonces εn : (CBn ,≤)→(Bn ,≤) es un isomorfismo ∀n ∈ N, esto
último indica el orden en el que se tomarán a los elementos de Bn = β(n)
cuando se realice la suma.
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ii)Análogamente al inciso anterior, cuando se utiliza el operador
∑
d|n

[ ] ∀n ∈ N,

estamos asociando al operador
∑

una función α ∈ ΛF (N) = {α | α : N→PF (N)} .
Esto es, le asociamos una sucesión de subconjuntos de números naturales tales
que, α(n) = An = {d ∈ N : d|n} ∀n ∈ N. Por lo tanto, podemos escribir∑
d|n

[ ]∀n ∈ N como ∑
p∈An=α(n)

[ ]∀n ∈ N

y según Observación 1.1 a cada An = α(n) le asociamos una función εn ∈
S(An) tal que εn : (CAn ,≤)→(An ,≤) es un isomorfismo ∀n ∈ N.

Entonces, podemos notar que la diferencia fundamental que existe entre los

operadores
∑
d|n

[ ] y

n∑
k=1

[ ] surge porque en cada caso se asocia una función

γ ∈ ΛF (N) diferente al operador
∑

además de una sucesión de isomorfismo
εn : (CDn ,≤)→(Dn ,≤) ( con el orden usual de N ) tales que Dn = γ(n)
∀n ∈ N.

Por otro lado, śı aplicamos la Definición 1.3 a cualquiera de los casos
anteriores conservando la notación utilizada en ellos tenemos que, ∀f ∈ A(N),
para cada Bn = β(n) y εn ∈ S(Bn) la suma de la función f sobre el operador∑

p∈Bn=β(n)

[ ]∀n ∈ N

está dada por la igualdad

∑
p∈β(n)

f(p) =

mβ(n)∑
k=1

f(εn(k))

y con ayuda de ésta podemos definir una función k ∈ A(PF (N)) tal que

k(Bn) =
∑

p∈β(n)

f(p).

Y por otra parte como la suma describe una función aritmética, entonces existe
una función g ∈ A(N) tal que

g(n) =
∑

p∈β(n)

f(p).

Pero esto nos genera un problema, ya que cuando aplicábamos el operador∑
p∈Bn=β(n)

[ ]
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sobre el conjunto A(N) obteńıamos una única función g ∈ A(N) y ahora también
debemos de asociar una función k ∈ A(PF (N)) que tiene una naturaleza distinta
a las funciones aritméticas. Sin embargo, esto no debeŕıa sorprendernos y menos
causarnos algún conflicto puesto que la función g ∈ A(N) y la función k ∈
A(PF (N)) denotan la misma suma

∑
p∈β(n)

f(p) =

mβ(n)∑
k=1

f(εn(k)) ∀n ∈ N.

Esto es claro, por la Observación 1.1 se tiene que que g = β◦k ∈ A(N) donde
β ∈ ΛF (N) y k ∈ A(PF (N)).

Por lo tanto, reescribiendo lo anterior tenemos que ∀f ∈ A(N), para cada
Bn = β(n) y εn ∈ S(Bn) tales que

εn : (CBn
,≤)→(Bn ,≤)

es un isomorfismo, entonces la suma de la función f sobre el operador∑
p∈Bn=β(n)

[ ]

define una función aritmética g dada por la igualdad

g(n) = β ◦ k(n) =
∑

p∈β(n)

f(p)

donde k ∈ A(PF (N)) está dada como

k(Bn) =
∑

p∈β(n)

f(p)∀n ∈ N.
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3. Definiciones

El análisis del apartado anterior nos permite visualizar el tipo de generali-
zaciones que haremos a continuación, éstas consistirán en asociar elementos del
conjunto Λ(PF (N)) con el operador

∑
y sobre dichas asociaciones establecere-

mos nuevas definiciones. Nos vamos a restringir al conjunto

Ω(PF (N)) = {α ∈ Λ(PF (N)) : {n} ⊆ α(n) ⊆ {1, ..., n} ∀n ∈ N} ,

ya que, según la Observación 1.2 a cada α ∈ Ω(PF (N)) le podemos asociar
una matriz triangular inferior infinita invertible con entradas complejas, en par-
ticular a Ω(PF (N)) se le pueden asociar matrices invertibles de ceros y unos.
Primero, establezcamos la siguiente definición,

Definición 3.1 Sean f ∈ A(N) y β ∈ Ω(PF (N)). Además, a cada Bn = β(n)
le asociamos una función εn ∈ S(Bn) tal que εn : (CBn

,≤)→(Bn ,≤) es un
isomorfismo ∀n ∈ N con el orden usual de N, entonces diremos que la suma de
la función f sobre el operador ∑

p∈Bn=β(n)

[ ]∀n ∈ N

es una función aritmética g definida por la igualdad

g(n) = β ◦ k(n) =
∑

p∈β(n)

f(p)

donde k ∈ A(PF (N)) está dada por

k(Bn) =
∑

p∈β(n)

f(p)∀n ∈ N.

Recordando que por la Definición 1.3, la igualdad

g(n) = β ◦ k(n) =
∑

p∈β(n)

f(p)

está definida como ∑
p∈β(n)

f(p) =

r∑
k=1

f(εn(k))

donde r = |β(n)| ∀n ∈ N. Por otra parte, vemos lo siguiente,

Definición 3.2 Sean f ∈ A(N) y β ∈ Ω(PF (N)). Además, a cada Bn = β(n)
le asociamos una función εn ∈ S(Bn) tal que εn : (CBn ,≤)→(Bn ,≤) es un

isomorfismo con el orden usual de N, entonces definimos la función f̂ como

f̂(p) = f(εn(r + 1− k)) ∀p ∈ Bn , p = εn(k)

donde r = |β(n)| ∀n ∈ N.
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Y con esto podemos ver lo siguiente.

Observación 3.3 Sean α, β ∈ Ω(PF (N)) tales que, α(n) = An y β(n) = Bn.
Entonce es inmediato que,

i) γ(n) := α(n) ∪ β(n) ⇒ γ ∈ Ω(PF (N))
ii) γ(n) := α(n) ∩ β(n) ⇒ γ ∈ Ω(PF (N))

Aśı, utilizando las definiciones anterior se tiene que,

Definición 3.4 Sean f ∈ A(N) y β ∈ Ω(PF (N)). Además, a cada Bn = β(n)
se asocia una función εn ∈ S(Bn) tal que εn : (CBn

,≤)→(Bn,≤) es un isomor-
fismo con el orden usual de N. Entonces ∀m ∈ N diremos que la función iterada
de grado m de la función f sobre el operador∑

p∈Bn=β(n)

[ ]

es una función aritmética h tal que

h(n) =
∑

p1∈β(n)

∑
p2∈β(p1)

· · ·
∑

pm−1∈β(pm−2)

∑
pm∈β(pm−1)

f(pm)∀n ∈ N

y la denotaremos como ∑
m

p∈β(n)

f(p).

Observación 3.5 Sea f ∈ A(N), entonces diremos que f es su función iterada
de grado 0 sobre el operador ∑

p∈Bn=β(n)

[ ]

y denotaremos esto como

f(n) =
∑

0
p∈β(n)

f(p).

Análogamente,

Definición 3.6 Sean f ∈ A(N) y β ∈ Ω(PF (N)). Además, a cada Bn = β(n)
le asociamos una función εn ∈ S(Bn) tal que εn : (CBn ,≤)→(Bn ,≤) es un
isomorfismo con el orden usual de N, entonces ∀m ∈ N diremos que la función
iterada inversa (dual o reciproca de grado m) de grado −m de la función f sobre
el operador ∑

p∈Bn=β(n)

[ ]

es una función aritmética h tal que,

f(n) =
∑

p1∈β(n)

∑
p2∈β(p1)

· · ·
∑

pm−1∈β(pm−2)

∑
pm∈β(pm−1)

h(pm)∀n ∈ N
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y la denotaremos como, ∑
−m

p∈β(n)

f(p).

Ahora daremos la definición el producto de Cauchy en términos de esta
sección.

Definición 3.7 Sean f, g ∈ A(N) y β ∈ Ω(PF (N)). Además, a cada Bn = β(n)
se asocia una función εn ∈ S(Bn) tal que εn : (CBn

,≤)→(Bn ,≤) es un iso-
morfismo con el orden usual de N, entonces definimos el producto o convolución
de Cauchy de las funciones aritméticas f y g como

f ∗ g(n) =
∑

p∈β(n)

f̂n(p)g(p) ∀n ∈ N.

Cabe mencionar que este producto es conmutativo por su definición.

Definición 3.8 Sean n ∈ N, p ∈ Z y β ∈ Ω(PF (N)). Además, a cada Bn =
β(n) le asocia una función εn ∈ S(Bn) tal que εn : (CBn ,≤)→(Bn ,≤) es
un isomorfismo ∀n ∈ N con el orden usual de N, y consideremos la matriz
Tβ = [θ(n,m)]m∈N

n∈N

θ(n,m) =

{
1, m ∈ Bn = β(n) ,

0, m /∈ Bn = β(n).

Entonces definimos la siguiente función;

ϱ
Tβ
p (s, t) = [Πp

n(Tβ)]
t
s = T p

β (s, t) ∀s, t ∈ N.

Para finalizar la sección no queda más que dar el resultado de linealidad
respecto a la iteración sobre las funciones aritméticas.

Teorema 3.9 Sean f ∈ A(N), n ∈ N, q ∈ Z y β ∈ Ω(PF (N)). Entonces se tiene
que ∑

q
p∈β(n)

f(k) =

n∑
k=1

ϱ
Tβ
q (n, k)f(k).

Demostración. Se sigue de las propiedades matriciales. ■

Con este resultado terminamos el estudio la propiedad lineal en la iteración
del operador Suma sobre las funciones aritméticas respecto a conjuntos finitos
de números naturales restringidos a Ω(PF (N)), lo cual es un caso particular de
los operadores aditivos definidos respecto de matrices, ya que lo anteriormente
expuesto solo considera matrices infinitas de ceros y unos.
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4. Ejemplos

Ejemplo 4.1 Sea n ∈ N, p ∈ Z y f, g ∈ A(N). Definimos la matriz B =
[B(n,m)]n,m,∈N tal que,

B(n,m) =


1, m ∈ An ,

0 m /∈ An.

donde,
An = {m ∈ N : m ∤ n o m = n}

Por otra parte, denotaremos al operador aditivo asociado como,
∑

d≤n: d∤n
d=n

[ ].

Es claro que,
∑

d≤n: d∤n
d=n

[ ] ≡
∑
d∈An

[ ] ≡
n∑

B
k=1

[ ].

Además, resulta inmediato que,∑
d≤n: d∤n

d=n

1 = n− δ2(n) + 1

Por otra parte, suponiendo que,

gm(n) =
∑

m

d≤n: d∤n
d=n

f(d)

Mostraremos con cálculos numérico la teoŕıa, para esto vamos a hallar,
∑

3

d≤7: d∤7
d=7

f(d).

Solución. Veamos que por la definición,

g1(1) = f(1)

g1(2) = f(2)

g1(3) = f(2) + f(3)

g1(4) = f(3) + f(4)

g1(5) = f(2) + f(3) + f(4) + f(5)

g1(6) = f(4) + f(5) + f(6)

g1(7) = f(2) + f(3) + f(4) + f(5) + f(6) + f(7)

www.mathsingular.com.mx 8

https://mathsingular.com.mx


Este trabajo tiene licencia CC BY-SA 4.0

Análogamente,

g2(1) = g1(1) = f(1)

g2(2) = g1(2) = f(2)

g2(3) = g1(2) + g1(3) = 2f(2) + f(3)

g2(4) = g1(3) + g1(4) = f(2) + 2f(3) + f(4)

g2(5) = g1(2) + g1(3) + g1(4) + g1(5) = 3f(2) + 3f(3) + 2f(2) + f(5)

g2(6) = g1(4) + g1(5) + g1(6) = f(2) + 2f(3) + 3f(4) + 2f(5) + f(6)

g2(7) = g1(2) + g1(3) + g1(4) + g1(5) + g1(6) + g1(7)

= 4f(2) + 4f(3) + 4(4) + 3f(5) + 2f(6) + f(7)

Por último,

g3(1) = g2(1) = f(1)

g3(2) = g2(2) = f(2)

g3(3) = g2(2) + g2(3) = 3f(2) + f(3)

g3(4) = g2(3) + g2(4) = 3f(2) + 3f(3) + f(4)

g3(5) = g2(2) + g2(3) + g2(4) + g2(5) = 7f(2) + 6f(3) + 3f(2) + f(5)

g3(6) = g2(4) + g2(5) + g2(6) = 5f(2) + 7f(3) + 6f(4) + 3f(5) + f(6)

g3(7) = g2(2) + g2(3) + g2(4) + g2(5) + g2(6) + g2(7)

= 12f(2) + 12f(3) + 10(4) + 6f(5) + 3f(6) + f(7)

Por lo tanto,

∑
3

d≤7: d∤7
d=7

f(d) =
∑

3
d∈A7

f(d)

=
∑

d1∈A7

∑
d2∈Ad1

∑
d3∈Ad2

f(d3)

= 12f(2) + 12f(3) + 10(4) + 6f(5) + 3f(6) + f(7)

Ahora, procedemos usando la propiedad lineal de la iteración fundamentada
por el álgebra de matrices.

Por la definición de B tenemos que, B7x7 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 1 1 1 1 0 0
0 0 0 1 1 1 0
0 1 1 1 1 1 1

 .

Entonces, B2
7x7 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 2 1 0 0 0 0
0 1 2 1 0 0 0
0 3 3 2 1 0 0
0 1 2 3 2 1 0
0 4 4 4 3 2 1

 y B3
7x7 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 3 1 0 0 0 0
0 3 3 1 0 0 0
0 7 6 3 1 0 0
0 5 7 6 3 1 0
0 12 12 10 6 3 1


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Por otro lado,
ϑB
3 (n,m) = B3

7x7(n,m)

Aśı,

∑
3

d≤7: d∤7
d=7

f(d) =

7∑
[3,B]

k=1

f(k)

=

7∑
k=1

ϑB
3 (n, k)f(k)

= 12f(2) + 12f(3) + 10(4) + 6f(5) + 3f(6) + f(7)

■

Ejemplo 4.2 Sea n ∈ N, p ∈ Z y f, g ∈ A(N). Definimos la matriz B =
[B(n,m)]n,m,∈N tal que,

B(n,m) =


1, m ∈ An ,

0 m /∈ An.

donde,
An = {m ≤ n : (n,m) = 1 o m = n}

Por otra parte, denotaremos al operador aditivo asociado como,
∑

d≤n: (d,n)=1
d=n

[ ].

Es claro que,
∑

d≤n: (d,n)=1
d=n

[ ] ≡
∑
d∈An

[ ] ≡
n∑

B
k=1

[ ].

Además, resulta inmediato que,∑
d≤n: (d,n)=1

d=n

1 = ϕ(n) + 1−
[
1

n

]

Por otra parte, suponiendo que,

gm(n) =
∑

m

d≤n: (d,n)=1
d=n

f(d).

Hallaremos,
∑

−1

d≤5: (d,5)=1
d=5

f(d).
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Solución. Veamos que, por la definición del operador aditivo se tiene que,∑
−1

d≤5: (d,5)=1
d=5

f(d) = g−1(5) ⇒ f(n) =
∑

d≤5: (d,5)=1
d=5

g−1(d)

Por lo tanto,

f(1) = g−1(1)

f(2) = g−1(1) + g−1(2)

f(3) = g−1(1) + g−1(2) + g−1(3)

f(4) = g−1(1) + g−1(3) + g−1(4)

f(5) = g−1(1) + g−1(2) + g−1(3) + g−1(4) + g−1(5)

Entonces resolviendo,

g−1(1) = f(1)

g−2(1) = f(2)− f(1)

g−1(3) = f(3)− f(2)

g−1(4) = f(4)− f(3) + f(2)− f(1)

g−1(5) = f(5)− f(4)− f(2) + f(1)

Por lo tanto,

∑
−1

d≤5: (d,5)=1
d=5

f(d) =
∑

−1
d∈A5

f(d)

= g−1(5)

= f(5)− f(4)− f(2) + f(1)

Ahora, procedemos usando la propiedad lineal de la iteraión.

Por la definición de B tenemos que, B5x5 =

(
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 0 1 1 0
1 1 1 1 1

)
.

Entonces, B−1
5x5 =

( 1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
−1 1 −1 1 0
1 −1 0 −1 1

)
Por otro lado,

ϑB
−1(n,m) = B−1

5x5(n,m)

Aśı,
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∑
−1

d≤5: (d,5)=1
d=5

f(d) =

5∑
[−1,B]

k=1

f(k)

=

5∑
k=1

ϑB
−1(n, k)f(k)

= f(5)− f(4)− f(2) + f(1)

■

Ejemplo 4.3 Sea n, t ∈ N, p ∈ Z, z ∈ C, y f, g ∈ A(N). Definimos B =
[B(n,m)]n,m,∈N tal que, B = [B(n,m)]n,m,∈N tal que,

B(n,m) =


1, m ∈ An ,

0 m /∈ An.

donde,
An = {m ≤ n : δ(m) = 2 o m = n}.

Por otra parte, denotaremos al operador aditivo asociado como,
∑

d≤n: δ(d)=2
d=n

[ ].

Es claro que,
∑

d≤n: δ(d)=2
d=n

[ ] ≡
∑
d∈An

[ ] ≡
n∑

B
k=1

[ ].

Ahora definamos las siguientes función aritmética sobre
∑

d≤n: δ(d)=2
d=n

[ ],

a1) ξ(n) =
∑

d≤n: δ(d)=2
d=n

1, es claro que ξ(n) = |An|.

a2) ϖ(n) =


1, δ(n) ≤ 2 ,

0 δ(n) > 2.

Por otro lado, de la definición del operador aditivo
∑

d≤n: δ(d)=2
d=n

[ ] y usando

las definiciones conocidas de la funciones aritméticas µ, φ, δ. Demostrar que,
i)

ξp(n) =
∑

p−1

d≤n: δ(d)=2
d=n

1 ⇔ ξm(n) = θp ◦ ξ(n)
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donde, θp(t) =

{
pt−1

(t−1)! , p ̸= 0,[
1
t

]
, p = 0.

ii) ∑
p

d≤n: δ(d)=2
d=n

f(d) =
∑

d≤n: δ(d)=2
d=n

f̂(d)ξp(d)

iii) ∑
d≤n: δ(d)=2

d=n

δ(d) = 2ξ(n) + δ(n) +

[
1

n

]
− 3

iv) ∑
d≤n: δ(d)=2

d=n

(d− ϕ(d)) = (n− ϕ(n)) + ξ(n) +

[
1

n

]
− 2

v) ∑
d≤n: δ(d)=2

d=n

ϖ(d) = ξ(n)−ϖ(n) + 1.

vi) ∑
d≤n: δ(d)=2

d=n

(ϖ(d) + µ(d)) = µ(n) +ϖ(n) + 2.

vii) Sea
ξz(n) := θz ◦ ξ(n)

donde,

θz(t) =

{
zt−1

(t−1)! , z ̸= 0,[
1
t

]
, z = 0.

y definamos ∑
z

d≤n: δ(d)=2
d=n

f(d) :=
∑

d≤n: δ(d)=2
d=n

f̂(d)ξz(d).

Entonces probar que,∑
1
2

d≤n: δ(d)=2
d=n

f(d) =
∑

d≤n: δ(d)=2
d=n

f̂(d)
2ξ(n)

22ξ(d)(2ξ(d)− 1)

(
2ξ(d)

ξ(d)

)
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